Skip to main content

Advertisement

Log in

Contrasting the effects of environment, dispersal and biotic interactions to explain the distribution of invasive plants in alpine communities

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Despite considerable efforts devoted to investigate the community assembly processes driving plant invasions, few general conclusions have been drawn so far. Three main processes, generally acting as successive filters, are thought to be of prime importance. The invader has to disperse (1st filter) into a suitable environment (2nd filter) and succeed in establishing in recipient communities through competitive interactions (3rd filter) using two strategies: competition avoidance by the use of different resources (resource opportunity), or competitive exclusion of native species. Surprisingly, despite the general consensus on the importance of investigating these three processes and their interplay, they are usually studied independently. Here we aim to analyse these three filters together, by including them all: abiotic environment, dispersal and biotic interactions, into models of invasive species distributions. We first propose a suite of indices (based on species functional dissimilarities) supposed to reflect the two competitive strategies (resource opportunity and competition exclusion). Then, we use a set of generalised linear models to explain the distribution of seven herbaceous invaders in natural communities (using a large vegetation database for the French Alps containing 5,000 community-plots). Finally, we measure the relative importance of competitive interaction indices, identify the type of coexistence mechanism involved and how this varies along environmental gradients. Adding competition indices significantly improved model’s performance, but neither resource opportunity nor competitive exclusion were common strategies among the seven species. Overall, we show that combining environmental, dispersal and biotic information to model invasions has excellent potential for improving our understanding of invader success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1974) A new look at statistical model identification. IEEE Trans Automat Contr AU-19:716–722

    Article  Google Scholar 

  • Albert CH, Thuiller W, Yoccoz NG, Soudan A, Boucher F, Saccone P, Lavorel S (2010) Intraspecific functional variability: extent, structure and sources of variation within an alpine valley. J Ecol 98:604–613

    Article  Google Scholar 

  • Albert CH, de Bello F, Boulangeat I (2012) On the importance of intraspecific variability for the quantification of functional diversity. Oikos 121:116–126

    Article  Google Scholar 

  • Angert AL, Huxman TE, Chesson P, Venable DL (2009) Functional tradeoffs determine species coexistence via the storage effect. Proc Natl Acad Sci USA 106:11641–11645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Chang Biol 11:1504–1513

    Article  Google Scholar 

  • Augustin NH, Mugglestone MA, Buckland ST (1996) An autologistic model for the spatial distribution of wildlife. J Appl Ecol 33:339–347

    Article  Google Scholar 

  • Benichou P, Le Breton O (1987) Prise en compte de la topographie pour la cartographie des champs pluviométriques statistiques. La Météorologie 7:23–34

    Google Scholar 

  • Bivand R (2014) spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.5-71

  • Boulangeat I, Lavergne S, Van Es J, Garraud L, Thuiller W (2012) Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients. J Biogeogr 39:204–214

    Article  Google Scholar 

  • Brooker RW, Maestre FT, Callaway RM et al (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34

    Article  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965

    Article  Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  CAS  PubMed  Google Scholar 

  • Carboni M, Münkemüller T, Gallien L, Lavergne S, Acosta A, Thuiller W (2013) Darwin’s naturalization hypothesis: scale matters in coastal plant communities. Ecography 36:560–568

    Article  PubMed Central  PubMed  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Evol Syst 31:343–366

    Article  Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes, models and applications. Pion, London

  • Daehler CC (2001) Darwin’s naturalization hypothesis revisited. Am Nat 158:324–330

    Article  CAS  PubMed  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211

    Article  Google Scholar 

  • Darwin CR (1859) The origin of species. John Murray, London

    Google Scholar 

  • Davies KF, Cavender-Bares J, Deacon N (2011) Native communities determine the identity of exotic invaders even at scales at which communities are unsaturated. Divers Distrib 17:35–42

    Article  Google Scholar 

  • de Bello F, Lavorel S, Lavergne S, Albert CH, Boulangeat I, Mazel F, Thuiller W (2013) Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36:393–402

    Article  Google Scholar 

  • De Roy K, Massimo M, Negroni A, Thas O, Balloi A, Fava F, Verstraete W, Daffonchio D, Boon N (2013) Environmental conditions and community evenness determine the outcome of biological invasion. Nat Commun 4:1383

    Article  PubMed  Google Scholar 

  • Diez JM, Williams PA, Randall RP, Sullivan JJ, Hulme PE, Duncan RP (2009) Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol Lett 12:1174–1183

    Article  PubMed  Google Scholar 

  • Dormann CF, McPherson JM, Araujo MB et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  • Dullinger S, Gattringer A, Thuiller W et al (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Chang 2:619–622

    Article  Google Scholar 

  • Duncan RP, Williams PA (2002) Darwin’s naturalization hypothesis challenged. Nature 417:608

    Article  CAS  PubMed  Google Scholar 

  • Engler R, Randin CF, Vittoz P, Czaka T, Beniston M, Zimmermann NE, Guisan A (2009) Predicting future distributions of mountain plants under climate change: Does dispersal capacity matter? Ecography 32:34–45

    Article  Google Scholar 

  • Engler R, Randin CF, Thuiller W et al (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Chang Biol 17:2330–2341

    Article  Google Scholar 

  • Fargione J, Brown CS, Tilman D (2003) Community assembly and invasion: an experimental test of neutral versus niche processes. Proc Natl Acad Sci USA 100:8916–8920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gallego FJ (2010) A population density grid of the European Union. Popul Environ 31:460–473

    Article  Google Scholar 

  • Gallien L, Münkemüller T, Albert CH, Boulangeat I, Thuiller W (2010) Predicting potential distributions of invasive species: Where to go from here? Divers Distrib 16:331–342

    Article  Google Scholar 

  • Gower JC (1971) General coefficient of similarity and some of its properties. Biometrics 27:857–861

    Article  Google Scholar 

  • Graham CH, Parra JL, Rahbek C, McGuire JA (2009) Phylogenetic structure in tropical hummingbird communities. Proc Natl Acad Sci USA 106:19673–19678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910

    Article  Google Scholar 

  • Grotkopp E, Rejmánek M, Rost TL (2002) Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. Am Nat 159:396–419

    Article  PubMed  Google Scholar 

  • Hamilton MA, Murray BR, Cadotte MW et al (2005) Life-history correlates of plant invasiveness at regional and continental scales. Ecol Lett 8:1066–1074

    Article  Google Scholar 

  • Higgins SI, Richardson DM, Cowling RM (2000) Using a dynamic landscape model for planning the management of alien plant invasions. Ecol App 10:1833–1848

    Article  Google Scholar 

  • HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annu Rev Ecol Evol Syst 43:227–248

    Article  Google Scholar 

  • Jakobs G, Weber E, Edwards PJ (2004) Introduced plants of the invasive Solidago gigantea (Asteraceae) are larger and grow denser than conspecifics in the native range. Divers Distrib 10:11–19

    Article  Google Scholar 

  • Kikvidze Z, Suzuki M, Brooker R (2011) Importance versus intensity of ecological effects: why context matters. Trends Ecol Evol 26:383–388

    Article  PubMed  Google Scholar 

  • Knevel IC, Bekker RM, Bakker JP, Kleyer M (2003) Life-history traits of the Northwest European flora: the LEDA database. J Veg Sci 14:611–614

    Article  Google Scholar 

  • Körner C (1999) Alpine plant life. Springer, Berlin

    Book  Google Scholar 

  • Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA (2012) Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecol Lett 15:831–840

    Article  PubMed Central  PubMed  Google Scholar 

  • Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226

    Article  Google Scholar 

  • Landolt E, Bäumler B, Erhardt A, Hegg O, Klötzli F, Lämmler W, Nobis M, Rudmann-Maurer K, Schweingruber FH, Theurillat J-P, Urmi E, Vust M, Wohlgemuth T (2010) Flora Indicativa. Haupt, Bern

    Google Scholar 

  • Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26

    Article  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615

    Article  Google Scholar 

  • Maddala GS (2001) Introduction to econometrics, 3rd edn. Wiley, New York

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    Article  PubMed  Google Scholar 

  • McIntire EJB, Fajardo A (2013) Facilitation as a ubiquitous driver of biodiversity. New Phytol 201:403–416

    Article  Google Scholar 

  • Meier ES, Edwards TC Jr, Kienast F, Dobbertin M, Zimmermann NE (2011) Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L. J Biogeogr 38:371–382

    Article  Google Scholar 

  • Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vazquez DP (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740

    Article  PubMed  Google Scholar 

  • Morales CL, Traveset A (2009) A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol Lett 12:716–728

    Article  PubMed  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Proches S, Wilson JRU, Richardson DM, Rejmanek M (2008) Searching for phylogenetic pattern in biological invasions. Glob Ecol Biogeogr 17:5–10

    Google Scholar 

  • Pysek P, Jarosik V, Hulme PE et al (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci USA 107:12157–12162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. Vienna, Austria

  • Rejmánek M, Richardson DM, Higgins SI, Pitcairn MJ, Grotkopp E (2005) Ecology of invasive plants: state of the art. In: Mooney HA, Mack RN, McNeely JA, Neville L, Schei PJ, Waage J (eds) Invasive alien species: a new synthesis. Island Press, Washington, DC, pp 104–161

    Google Scholar 

  • Richardson DM, Pysek P (2012) Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol 196:383–396

    Article  PubMed  Google Scholar 

  • Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431

    Article  Google Scholar 

  • Roura-Pascual N, Bas JP, Thuiller W, Hui C, Krug RM, Brotons L (2009) From introduction to equilibrium: reconstructing the invasive pathways of the Argentine ant in a Mediterranean region. Glob Chang Biol 15:2101–2115

    Article  Google Scholar 

  • Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. Bioscience 52:891–904

    Article  Google Scholar 

  • Schaefer H, Hardy OJ, Silva L, Barraclough TG, Savolainen V (2011) Testing Darwin’s naturalization hypothesis in the Azores. Ecol Lett 14:389–396

    Article  PubMed  Google Scholar 

  • Seastedt TR, Pysek P (2011) Mechanisms of plant invasions of North America and European. Annu Rev Ecol Evol Syst 42:133–153

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Simberloff D (2006) Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol Lett 9:912–919

    Article  PubMed  Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102

    Article  Google Scholar 

  • Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinf 8:25

    Article  Google Scholar 

  • Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102:4387–4392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swenson NG (2006) Gis-based niche models reveal unifying climatic mechanisms that maintain the location of avian hybrid zones in a North American suture zone. J Evol Biol 19:717–725

    Article  CAS  PubMed  Google Scholar 

  • Swets KA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273

    Article  PubMed  Google Scholar 

  • Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol 11:2234–2250

    Article  Google Scholar 

  • Thuiller W, Gallien L, Boulangeat I, de Bello F, Muenkemueller T, Roquet C, Lavergne S (2010) Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers Distrib 16:461–475

    Article  Google Scholar 

  • Thuiller W, Gasso N, Pino J, Vila M (2012) Ecological niche and species traits: key drivers of regional plant invader assemblages. Biol Invasions 14:1963–1980

    Article  Google Scholar 

  • Van Kleunen M, Schlaepfer DR, Glaettli M, Fischer M (2011) Preadapted for invasiveness: do species traits or their plastic response to shading differ between invasive and non-invasive plant species in their native range? J Biogeogr 38:1294–1304

    Article  Google Scholar 

  • van Wilgen NJ, Richardson DM (2011) Is phylogenetic relatedness to native species important for the establishment of reptiles introduced to California and Florida? Divers Distrib 17:172–181

    Article  Google Scholar 

  • Vila M, Pujadas J (2001) Land-use and socio-economic correlates of plant invasions in European and North African countries. Biol Conserv 100:397–401

    Article  Google Scholar 

  • Welden CW, Slauson WL (1986) The intensity of competition versus its importance—an overlooked distinction and some implications. Quart Rev Biol 61:23–44

    Article  CAS  PubMed  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    Article  CAS  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • Westoby M, Falster DS, Moles AT (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Evol Syst 33:125–159

    Article  Google Scholar 

  • Wisz MS, Pottier J, Kissling WD et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30

    Article  PubMed Central  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank T. Münkemüller for the thought-provoking discussions we have had. The research leading to these results received funding from the European Research Council under the European Community’s Seven Framework Programme FP7/2007-2013 Grant Agreement No. 281422 (TEEMBIO). LG, WT and SL acknowledge support from the French “Agence Nationale de la Recherche” under the SCION Project (ANR-08-PEXT-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Gallien.

Appendix: Test of spatial autocorrelation in the model residuals

Appendix: Test of spatial autocorrelation in the model residuals

The Moran’s I index scores and randomisation tests were performed with the R package spdep (Bivand 2014).

See Table 3.

Table 3 Tests of spatial autocorrelation of the model residuals (models including environmental, dispersal and biotic indices variables)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallien, L., Mazel, F., Lavergne, S. et al. Contrasting the effects of environment, dispersal and biotic interactions to explain the distribution of invasive plants in alpine communities. Biol Invasions 17, 1407–1423 (2015). https://doi.org/10.1007/s10530-014-0803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0803-1

Keywords

Navigation