Skip to main content

Advertisement

Log in

Taxon specific response of carabids (Coleoptera, Carabidae) and other soil invertebrate taxa on invasive plant Amorpha fruticosa in wetlands

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

False indigo (Amorpha fruticosa L.) is an invasive exotic plant introduced to Europe in the early eighteenth century. Its spread has been rapid, particularly in disturbed wetland habitats, where it forms dense impermeable monospecific stands and modifies habitat conditions. The impact of A. fruticosa on native plant communities has been well analyzed, however knowledge concerning the possible effects on soil invertebrates and particularly carabid beetles is completely lacking. This study analyzed the impact of an A. fruticosa invasion on carabid beetles and other soil invertebrates. Soil fauna was sampled by pitfall traps at natural habitats, initially colonized by A. fruticosa, and habitats largely invaded by A. fruticosa. In total 2,613 carabid beetles belonging to 50 species and 72,166 soil invertebrates were collected. The invasion of A. fruticosa strongly affected the carabid beetle species composition, which clearly differed between all studied sites. Widespread euritopic carabid beetle species showed positive responses to A. fruticosa invasion, while the activity density of open habitat species strongly declined. Mean individual biomass was significantly higher at invaded sites due to increased incidence of large carabids (genus Carabus Linné, 1758). Carabid beetle activity density and abundance of soil invertebrates were considerably higher at invaded sites than in natural sites. Conversely, the impact of A. fruticosa on carabid beetle species richness and diversity was less pronounced, most likely due to immigration from adjacent habitats. Changes in carabid beetle species composition and abundance of soil invertebrates were most likely due to changes in vegetation structure and microclimate. The results suggest that A. fruticosa invasion considerably affected carabid beetles, an insect group that is only indirectly related to plant composition. Therefore, severe future changes can be expected in invertebrate groups that are closely related to plant composition, since A. fruticosa cannot be completely removed from the habitat and covers relatively large areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen ON, Allen EK (1981) The Leguminosae: a source book of characteristics, uses, and nodulation. WI University of Wisconsin Press, Madison

    Google Scholar 

  • Anderson R, McFerran D, Cameron A (2000) The ground beetles of Northern Ireland. Ulster Museum, Dublin

    Google Scholar 

  • Antolović J, Flajšman E, Frković A, Grgurev M, Grubešić M, Hamidović D, Holcer D, Pavlinić I, Tvrtković N, Vuković M (2006) Red book of mammals of Croatia. Ministry of Culture and State Institute for Nature Protection, Zagreb

    Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie: Grundzüge der Vegetationskunde. Verlag Eugen Ulmer, Wien

    Book  Google Scholar 

  • Bryan KM, Wratten SD (1984) The responses of polyphagous predators to spatial heterogeneity: aggregation by carabid and staphylinid beetles to their cereal aphid prey. Ecol Entomol 9:251–259

    Article  Google Scholar 

  • Cárdenas AM, Hidalgo JM (2007) Application of the mean individual biomass (MIB) of ground beetles (Coleoptera, Carabidae) to assess the recovery process of the Guadiamar Green Corridor (south Iberian Peninsula). Biodivers Conserv 16:4131–4146

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Comandini F, Taglianti AV (1990) Ground beetle communities in a Mediterranean area (Tolfa Mountains, Central Italy). In: Stork NE (ed) The role of ground beetles in ecological and environmental studies. Intercept Ltd., Andover, pp 171–179

    Google Scholar 

  • D’Auria G, Zavagno F (1998) Alien plants and protected areas: synecology and dynamics of Amorpha fruticosa L. in the Po Valley (Northern Italy). Arch Geobot 4 (I):131–136

    Google Scholar 

  • de Groot M, Kleijn D, Jogan N (2007) Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis. Biol Conserv 136:612–617

    Article  Google Scholar 

  • de Vries HH (1994) Size of habitat and presence of ground beetle species. In: Desender K, Dufrêne M, Maelfait JP (eds) Carabid beetles—ecology and evolution. Kluwer Academic Publishers, Dordrecht, pp 253–259

    Chapter  Google Scholar 

  • DeHaan L, Ehlke N, Sheaffer C, Wyse D, DeHaan R (2006) Evaluation of diversity among North American accessions of false indigo (Amorpha fruticosa L.) for forage and biomass. Genet Resour Crop Evol 53:1463–1476

    Article  Google Scholar 

  • Den Boer PJ (1990) Density limits and survival of local populations in 64 carabid species with different powers of dispersal. J Evol Biol 3:19–48

    Article  Google Scholar 

  • Digweed SC, Currie CR, Cárcamo HA, Spence JR (1995) Digging out the digging-in effect of pitfall traps: influences of depletion and disturbance on catches of ground beetles (Coleoptera: Carabidae). Pedobiologia 39:561–576

    Google Scholar 

  • Dumitraşcu M, Grigorescu I, Kucsicsa G, Dragotă C-S, Năstase M (2011) Non-native and native invasive terrestrial plant species in Comana Natural Park. Case-studies: Amorpha fruticosa and Crataegus monogyna. Rom J Geogr 55:81–89

    Google Scholar 

  • Freude H, Harde K-W, Lohse GA, Klausnitzer B (2006) Die Käfer Mitteleuropas, Band 2 Adephaga 1: Carabidae (Laufkäfer). Spektrum Verlag, Heidelberg

    Google Scholar 

  • Giglio A, Giulianini PG, Zetto T, Talarico F (2011) Effects of the pesticide dimethoate on a non-target generalist carabid, Pterostichus melas italicus (Dejean, 1828) (Coleoptera: Carabidae). Ital J Zool 78(4):471–477

    Article  Google Scholar 

  • Greenslade PJM (1963) Further notes on aggregation in Carabidae (Coleoptera), with special references to Nebria brevicollis (F.). Entomol Mon Mag 99:109–114

    Google Scholar 

  • Herrera AM, Dudley TL (2003) Reduction of riparian arthropod abundance and diversity as a consequence of giant reed (Arundo donax) invasion. Biol Invasions 5:167–177

    Article  Google Scholar 

  • Honĕk A (1997) The effect of plant cover and weather on the activity density of ground surface arthropods in a fallow field. Entomol Res Org Agric 3:203–210

    Google Scholar 

  • Hore U, Uniyal VP (2008) Influence of space, vegetation structure, and microclimate on spider (Araneae) species composition in Terai Conservation Area, India. In: Nentwig W, Entling M, Kropf C (eds) Proceedings of the 24th European Congress of Arachnology, Bern, Natural Museum, pp 71–77

  • Hornung E (2011) Evolutionary adaptation of oniscidean isopods to terrestrial life: structure, physiology and behaviour. Terr Arthropod Rev 4:95–130

    Article  Google Scholar 

  • Horvat I (1949) Nauka o biljnim zajednicama. Nakladni zavod Hrvatske, Zagreb

  • Houlahan JF, Findlay CS (2004) Effect of invasive plant species on temperate wetland plant diversity. Conserv Biol 18:1132–1138

    Article  Google Scholar 

  • Hulina N (1998) Rare, endangered or vulnerable plants and neophytes in a drainage system in Croatia. Nat Croat 7:279–289

    Google Scholar 

  • Hulina N (2010) “Planta Hortifuga” in flora of the continental part of Croatia. Agric Conspec Sci 75:57–65

    Google Scholar 

  • Hůrka K (1996) Carabidae of the Czech and Slovak Republics. Kabourek, Zlín

    Google Scholar 

  • Huxley A (1992) The new RHS dictionary of gardening. MacMillian Press, New York

    Google Scholar 

  • Idžojtić M, Poljak I, Zebec M, Perić S (2009) Biological, morphological and ecological characteristics of indigobush (Amorpha fruticosa L.). In: Krpan APB (ed) Biological-ecological and energetic characteristics of indigobush (Amorpha fruticosa L.) in Croatia. Book of abstracts, Forest Research Institute, Croatian Forests, Croatian Chamber of Forestry and Wood Technology Engineers, Zagreb pp 39

  • Jaenike J (1990) Host specialization in phytophagous insects. Annu Rev Ecol Syst 21:243–273

    Article  Google Scholar 

  • Kegel B (1990) Diurnal activity of carabid beetles living on arable land. In: Stork NE (ed) The role of ground beetles in ecological and environmental studies. Intercept Ltd., Andover, pp 66–76

    Google Scholar 

  • Koivula M, Kukkonen J, Niemelä J (2002) Boreal carabid-beetle (Coleoptera, Carabidae) assemblages along the clear-cut originated succession gradient. Biodivers Conserv 11:1269–1288

    Article  Google Scholar 

  • Kovačić D (1999) Spoonbill Colony Krapje Đol; JUPP. Lonjsko Polje report, Jasenovac

  • Križanić A (2002) The ground beetles (Coleoptera, Carabidae) of the Krapje Đol Ornithological Reserve. Diploma thesis, University of Zagreb

  • Krpan APB (ed) (2009) Biological-ecological and energetic characteristics of indigobush (Amorpha fruticosa L.) in Croatia. Book of abstracts, Forest Research Institute, Croatian Forests, Croatian Chamber of Forestry and Wood Technology Engineers, Zagreb

  • Krpan APB, Tomašić Ž, Bašić Palković P (2011) Biopotencijal amorfe (Amorpha fruticosa L.)—druga godina istraživanja. Šumarski List 135:103–113

    Google Scholar 

  • Lindroth CH (1992) Ground beetles (Carabidae) of Fennoscandia: a zoogeographic study. Specific knowledge regarding the species. Part 1. Smithsonian Institution Libraries and the National Science Foundation, Washington DC

  • Liović B, Halambek M (1988) Weed control of indigobush (Amorpha fruticosa L.). Radovi 75:141–145

    Google Scholar 

  • Litt AR, Steidl RJ (2010) Insect assemblages change along a gradient of invasion by a non-native grass. Biol Invasions 12:3449–3463

    Article  Google Scholar 

  • Löbl I, Smetana A (eds) (2003) Catalogue of Palaearctic Coleoptera, vol 1. Apollo Books, Stenstrup

    Google Scholar 

  • Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256

    Article  PubMed  Google Scholar 

  • Maelfait JP, Desender K (1990) Possibilities of short-term carabid sampling for site assessment studies. In: Stork NE (ed) The role of ground beetles in ecological and environmental studies. Intercept Ltd., Andower, pp 217–225

    Google Scholar 

  • Magura T, Elek Z, Tóthmérész B (2002) Impacts of non-native spruce reforestation on ground beetles. Eur J Soil Biol 38:291–295

    Article  Google Scholar 

  • McGeoch MA, Chown SL (1998) Scaling up the value of bioindicators. Trends Ecol Evol 13:46–47

    Article  CAS  PubMed  Google Scholar 

  • Morecroft MD, Taylor ME, Oliver HR (1998) Air and soil microclimates of deciduous woodland compared to an open site. Agric For Meteorol 90:141–156

    Article  Google Scholar 

  • Mršić N (1997) Živali naših tal, Uvod v pedozoologijo—sistematika in ekologija s splošnim pregledom talnih živali. Tehnička založba Slovenije, Ljubljana

    Google Scholar 

  • Niemelä J, Haila Y, Punttila P (1996) The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradient. Ecography 19:352–368

    Article  Google Scholar 

  • Novak N, Kravarščan M (2011) Invazivne strane korovne vrste u Republici Hrvatskoj. Hrvatski centar za poljoprivredu, hranu i selo, Zagreb

  • Pedaschenko HP, Apostolova II, Vassilev KV (2012) Amorpha fruticosa invasibility of different habitats in lower Danube. Phytol Balcan 18:285–291

    Google Scholar 

  • Pétillon J, Ysnel F, Canard A, Lefeuvre J-C (2005) Impact of an invasive plant (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management: response of spider populations. Biol Consev 126:103–117

    Article  Google Scholar 

  • Radović D, Kralj J, Tutiš V, Ćiković D (2003) Red data book of birds of Croatia. Ministry of Environmental and Physical Planning, Zagreb

    Google Scholar 

  • Radović A, Mikulić K, Vasilik Ž, Budinski I, Jelaska SD (2012) The impact of invasive species Amorpha fruticosa on the structure of bird communities in agricultural areas in the “Lonjsko polje” Nature Park. In: Jelaska SD, Klobučar GIV, Šerić Jelaska L, Leljak Levanić D, Lukša Ž (eds) 11th Croatian biological congress with international participation. Book of abstracts, Croatian biological society, Zagreb, pp 224–225

  • Rainio J, Niemelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers Conserv 12:487–506

    Article  Google Scholar 

  • Ravenga C, Brunner J, Henninger N, Kassem K, Payne R (2000) Pilot analysis of global ecosystems: wetland ecosystems. World Resources Institute, Washington, DC

    Google Scholar 

  • Samways MJ, Caldwell PM, Osborn R (1996) Ground-living invertebrate assemblages in native, planted and invasive vegetation in South Africa. Agric Ecosyst Environ 59:19–32

    Article  Google Scholar 

  • Sărăţeanu V (2010) Assessing the influence of Amorpha fruticosa L. invasive shrub species on some grassland vegetation types from Western Romania. Res J Agric Sci 42:536–540

    Google Scholar 

  • Schirmel J, Timler L, Buchholz S (2010) Impact of the invasive moss Campylopus introflexus on carabid beetles (Coleoptera: Carabidae) and spiders (Araneae) in acidic coastal dunes at the southern Baltic Sea. Biol Invasions 13:605–620

    Article  Google Scholar 

  • Schmidt L (1970) Tablice za determinaciju Insekata, Priručnik za agronome, šumare i biologe. Sveučilište u Zagrebu, Zagreb

    Google Scholar 

  • Schneider-Jacoby M (2005) The Sava and Drava floodplains: threatened ecosystems of international importance. Arch Hydrobiol (Supplement band: Large rivers) 16:249–288

    Google Scholar 

  • Schneider-Jacoby M, Ern H (1993) The Lonjsko Polje Nature Park—diversity caused by floods. Croatian Ecological Society, Zagreb

    Google Scholar 

  • Schnitzler A, Hale BW, Alsum EM (2007) Examining native and exotic species diversity in European riparian forests. Biol Conserv 138:146–156

    Article  Google Scholar 

  • Schwerk A, Szyszko J (2007) Increase of Mean Individual Biomass (MIB) of Carabidae (Coleoptera) in relation to succession in forest habitats. Wiad Entomol 26:195–206

    Google Scholar 

  • Schwerk A, Szyszko J (2008) Patterns of succession and conservation value of post-industrial areas in central Poland based on carabid fauna (Coleoptera, Carabidae). In: Penev L, Erwin T, Assmann T (eds) Back to the roots and back to the future. Towards a new synthesis between taxonomic, ecological and biogeographical approaches in carabidology. Proceedings of the XIII European Carabidologist Meeting, Pensoft Publishers, Blagoevgrad, pp 469–482

  • Seibold S, Fischer A (2013) Suppression of alien invasive species by traditional land use forms: Amorpha fruticosa L. in the Croatian nature park Lonjsko Polje. Sauteria 20:265–276

    Google Scholar 

  • Stančić Z (2007) Final report of the projects ‘Neophytic species of vascular flora in Croatia’ and ‘Habitats of neophytic species of vascular flora in Croatia’. State Institute for Nature Protection, Zagreb

    Google Scholar 

  • StatSoft Inc. (2010) Statistica (Date Analysis Software System), Version 10. http://www.statsoft.com/

  • Škorić A (1982) Manual for pedological investigations. Faculty of Agriculture, Zagreb

    Google Scholar 

  • Szentesi A (1999) Predispersal seed predation of the introduced false indigo, Amorpha fruticosa L. in Hungary. Acta Zool Acad Sci Hung 45:125–141

    Google Scholar 

  • Szigetvári CS (2002) Initial steps in the regeneration of a floodplain meadow after a decade of dominance of an invasive transformer shrub, Amorpha fruticosa L. Tiscia 33:67–77

    Google Scholar 

  • Szyszko J (1983) Methods of macrofauna investigations. In: Szujecki A, Szyzsko J, Mazurs S, Perliñski S (eds) The process of forest soil macrofauna formation after afforestation of farmland. Warsaw Agricultural University Press, Warsaw, pp 10–16

    Google Scholar 

  • Szyszko J (1990) Planning of prophylaxis in threatened pine forest biocenoses based on an analysis of the fauna of epigeic Carabidae. Warsaw Agricultural University Press, Warsaw

    Google Scholar 

  • Szyszko J, Vermeulen HJW, Klimaszewski K, Abs M, Schwerk A (2000) Mean individual biomass (MIB) of ground beetles (Carabidae) as an indicator of the state of the environment. In: Brandmayr P, Lövei G, Zetto Brandmayr T, Casale A, Vigna Taglianti A (eds) Natural history and applied ecology of carabid beetles. Pensoft Publishers, Sofia, Moscow, pp 289–294

    Google Scholar 

  • Takagi K, Hioki Y (2012) Autoecology, distributional expansion and negative effects of Amorpha fruticosa L. on a river ecosystem: a case study in the Sendaigawa River, Tottori Prefecture. Landscape Ecol Eng 9:175–188

    Article  Google Scholar 

  • Tallamy DW (2004) Do alien plants reduce insect biomass? Conserv Biol 18:1689–1692

    Article  Google Scholar 

  • Thiele HU (1977) Carabid beetles in their environments. A study on habitat selection by adaptation in physiology and behaviour, Zoophysiology and Ecology 10. Springer, Berlin

  • Thomas CFG, Parkinson L, Marshall EJP (1998) Isolating the components of activity-density for the carabid beetle Pterostichus melanarius in farmland. Oecologia 116:103–112

    Article  Google Scholar 

  • Tockner K, Uehlinger U, Robinson CT (eds) (2009) Rivers of Europe. Academic Press, London

    Google Scholar 

  • Toft S, Bilde T (2002) Carabid diets and food value. In: Holland JM (ed) The agroecology of carabid beetles. Intercept Ltd., Andover, pp 81–110

    Google Scholar 

  • Topić J, Vuković N, Nikolić T (2010) Lonjsko Polje. In: Alegro A, Bogdanović S, Brana S, Jasprica N, Katalinić A, Kovačić S, Nikolić T, Milović M, Pandža M, Posavec-Vukelić V, Randić M, Ruščić M, Šegota V, Šincek D, Topić J, Vrbek M, Vuković N (eds) Botanically important areas in Croatia. Školska knjiga, Zagreb, pp 255–262

    Google Scholar 

  • Topp W, Kappes H, Rogers F (2008) Response of ground dwelling beetle (Coleoptera) assemblages to giant knotweed (Reynouria spp.) invasion. Biol Invasions 10:381–390

    Article  Google Scholar 

  • Trautner J, Geigenmüller K (1987) Tiger beetles and ground beetles, illustrated key to the Cicindelidae and Carabidae of Europe. Josef Margraf, Aichtal

    Google Scholar 

  • Tucović A, Isajev V, Šijačić-Nikolić (2004) Secondary range and ecophysio-logical characteristics of Amorpha fruticosa L. in Serbia. B Fac Fore 89:223–230

    Article  Google Scholar 

  • Turin H, Penev I, Casale A (eds) (2003) The genus Carabus in Europe. Pensoft Publishers, Sofia, Moscow

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1964–1980) Flora Europaea 1–5. Cambridge University Press, Cambridge

  • Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1993) Flora Europaea 1. Cambridge University Press, Cambridge

  • Vujčić-Karlo S, Brigić A, Šerić-Jelaska L, Kokan B, Hrašovec B (2007) Red List of threatened carabid beetles of Croatia. http://www.dzzp.hr/dokumenti_upload/20100414/dzzp201004141257453.pdf

  • Wachmann E, Platen R, Brandt D (1995) Laufkäfer—Beobachtung, Lebenweise. Naturbuch Verlag, Augsburg

    Google Scholar 

  • Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martinéz-Romero E (1999) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Inter J Syst Bacteriol 49:51–65

    Article  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems, linking the aboveground and belowground components. Princeton University Press, New Jersey

    Google Scholar 

  • Wolters V, Ekschmitt K (1997) Gastropods, isopods, diplopods, and chilopods: neglected groups of decomposer food web. In: Benckiser G (ed) Fauna in soil ecosystems: recycling processes, nutrient fluxes and agriculture production. Marcel Dekker Inc., New York, pp 279–281

    Google Scholar 

  • Zaninović K, Gajić-Čapka M, Perčec Tadić M, Vučetić M, Milković J, Bajić A, Cindrić K, Cvitan L, Katušin Z, Kaučić D, Likso T, Lončar E, Lončar Ž, Mihajlović D, Pandžić K, Patarčić M, Srnec L, Vučetić V (2008) Climate Atlas of Croatia: 1961–1990, 1971–2000. Meteorological and Hydrological Service of Croatia, Zagreb

    Google Scholar 

  • Zavagno F, D’Auria G (2001) Synecology and dynamics of Amorpha fruticosa communities in the Po plain (Italy). In: Brundu G, Brock J, Camarda I, Child L, Wade M (eds) Plant invasions: species ecology and ecosystem management. Backhuys, Leiden, pp 175–182

    Google Scholar 

Download references

Acknowledgments

First author would like to thank Dario Brigić and Stjepan Križanić for assistance during the field work. We thank anonymous referee for the comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreja Brigić.

Appendix

Appendix

See Table 4.

Table 4 Carabid beetle species recorded during the study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brigić, A., Vujčić-Karlo, S., Kepčija, R.M. et al. Taxon specific response of carabids (Coleoptera, Carabidae) and other soil invertebrate taxa on invasive plant Amorpha fruticosa in wetlands. Biol Invasions 16, 1497–1514 (2014). https://doi.org/10.1007/s10530-013-0587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0587-8

Keywords

Navigation