Skip to main content
Log in

Habitat requirements, short-term population dynamics and coexistence of native and invasive Impatiens species: a field study

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The genus Impatiens (Balsaminaceae) includes three widespread species in the Czech Republic, central Europe: the native I. noli-tangere, and two invasive species, I. parviflora and I. glandulifera, differing in the dynamics of invasion. They all occur in similar habitats and share basic life-history characteristics, which make them a suitable model for studying species traits associated with invasiveness. In this study we investigated differences in habitat requirements of these Impatiens species, their coexistence and short-term population dynamics in the field. We established 84 1 × 1 m permanent plots in five localities where all three species co-occurred. In each plot vascular plant species were determined, their cover estimated and all individuals of Impatiens species counted. Site characteristics including tree canopy cover, soil moisture, nitrogen and carbon content, and slope were measured directly. Nutrients, light, humidity and soil reaction were estimated using Ellenberg indicator values. The presence of I. noli-tangere was strongly correlated with high soil moisture, that of I. parviflora with high tree canopy cover and low soil moisture. Impatiens glandulifera exhibited a unimodal response to tree canopy cover, avoiding both very shaded and fully open sites. The current-year abundances of all species were negatively related to those of congeneric species. These results suggest that the coexistence of Impatiens species in the same habitat is due to microsite differentiation. Further spread of I. glandulifera to new habitats, and reduction of the native I. noli-tangere niche, can be expected in areas where the latter species co-occurs with competitively strong invasive congeners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamowski W (2008) Balsams on the offensive: the role of planting in the invasion of Impatiens species. In: Tokarska-Guzik B, Brock JH, Brundu G, Child L, Daehler CC, Pyšek P (eds) Plant invasions: human perception, ecological impacts and management. Backhuys Publishers, Leiden, pp 57–70

    Google Scholar 

  • Andrews M, Maule HG, Hodge S, Cherrill A, Raven JA (2009) Seed dormancy, nitrogen nutrition and shade acclimation of Impatiens glandulifera: implications for successful invasion of deciduous woodland. Plant Ecol Divers 2:145–153

    Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York, pp 147–172

    Google Scholar 

  • Beerling DJ, Perrins DM (1993) Biological flora of British Isles: Impatiens glandulifera Royle (Impatiens Roylei Walp.). J Ecol 81:367–381

    Google Scholar 

  • Berg MP, Ellers J (2010) Trait plasticity in species interactions: a driving force of community dynamics. Evol Ecol 24:617–629

    Google Scholar 

  • Blumenthal D, Mitchell CE, Pyšek P, Jarošík V (2009) Synergy between pathogen release and resource availability in plant invasion. Proc Natl Acad Sci USA 106:7899–7904

    CAS  PubMed  Google Scholar 

  • Burns JH (2004) A comparison of invasive and non-invasive dayflower (Commelinaceae) across experimental nutrient and water gradients. Divers Distrib 10:387–397

    Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SV (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    PubMed  Google Scholar 

  • Chittka L, Schürkens S (2001) Successful invasion of a floral market—an exotic Asian plant has moved in on Europe’s river-banks by bribing pollinators. Nature 411:653

    CAS  PubMed  Google Scholar 

  • Chmura D, Sierka E (2007) The invasibility of deciduous forest communities after disturbance: a case study of Carex brizoides and Impatiens parviflora invasion. For Ecol Manage 242:487–495

    Google Scholar 

  • Chytrý M, Jarošík V, Pyšek P, Hájek O, Knollová I, Tichý L, Danihelka J (2008a) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:1541–1553

    PubMed  Google Scholar 

  • Chytrý M, Maskell LC, Pino J, Pyšek P, Vilà M, Font X, Smart SM (2008b) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458

    Google Scholar 

  • Clements DR, Feenstra KR, Jones K, Staniforth R (2008) The biology of invasive alien plants in Canada. 9. Impatiens glandulifera Royle. Can J Plant Sci 88:403–417

    Google Scholar 

  • Coombe DE (1956) Impatiens Parviflora DC. J Ecol 44:701–713

    Google Scholar 

  • Crawley MJ (2008) The R book. Wiley, Chichester

    Google Scholar 

  • Daehler CC (2001) Darwin’s naturalization hypothesis revisited. Am Nat 158:324–330

    CAS  PubMed  Google Scholar 

  • Darwin C (1859) The origin of species. John Murray, London

    Google Scholar 

  • Daumann E (1967) Zur Bestäubungs- und Verbreitungsökologie dreier Impatiens-Arten. Preslia 39:43–58

    Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Google Scholar 

  • Dayan T, Simberloff D (2005) Ecological and community-wide character displacement: the next generation. Ecol Lett 8:875–894

    Google Scholar 

  • Development Core Team R (2011) R: a language and environment for statistical computing, Version 2.12.2. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Donohue K, Pyle EH, Messiqua D, Heschel MS, Schmitt J (2001) Adaptive divergence in plasticity in natural populations of Impatiens capensis and its consequences for performance in novel habitats. Evolution 55:692–702

    CAS  PubMed  Google Scholar 

  • Dostál P, Weiser M, Koubek T (2012) Native jewelweed, but not other native species, displays post-invasion trait divergence. Oikos 121:1849–1859

    Google Scholar 

  • Dudley SA, Schmitt J (1995) Genetic differentiation in morphological responses to simulated foliage shade between populations of Impatiens capensis from open and woodland sites. Funct Ecol 9:655–666

    Google Scholar 

  • Ehrenberger F, Gorbach S (1973) Methoden der organischen Elementar- und Spurenanalyse. Verlag Chemie, Weinheim

    Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–258

    Google Scholar 

  • Faliński JB (1998) Invasive alien plants, vegetation dynamics and neophytism. Phytocoenosis 10 (N.S.). Suppl Cartogr Geobot 9:163–188

    Google Scholar 

  • Foxcroft LC, Rouget M, Richardson DM (2007) Risk assessment of riparian plant invasions into protected areas. Conserv Biol 21:412–421

    PubMed  Google Scholar 

  • Foxcroft LC, Jarošík V, Pyšek P, Richardson DM, Rouget M (2011) Protected-area boundaries as filters of plant invasions. Conserv Biol 25:400–405

    PubMed Central  PubMed  Google Scholar 

  • Franks PJ, Farquhar GD (1999) A relationship between humidity response, growth form and photosynthetic operating point in C-3 plants. Plant Cell Environ 22:1337–1349

    Google Scholar 

  • Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA): users manual and program documentation. Simon Frazer University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York

  • Gaertner M, Richardson DM, Privett SDJ (2011) Effects of alien plants on ecosystem structure and functioning and implications for restoration: insights from three degraded sites in South African Fynbos. Environ Manag 48:57–69

    Google Scholar 

  • Godefroid S, Dana ED (2007) Can Ellenberg’s indicator values for Mediterranean plants be used outside their region of definition? J Biogeogr 34:62–68

    Google Scholar 

  • Godefroid S, Koedam N (2010) Comparative ecology and coexistence of introduced and native congeneric forest herbs: Impatiens parviflora and Impatiens noli-tangere. Plant Ecol Evol 143:119–127

    Google Scholar 

  • Green EK, Galatowitsch SM (2002) Effects of Phalaris arundinacea and nitrate-N addition on the establishment of wetland plant communities. J Appl Ecol 39:134–144

    CAS  Google Scholar 

  • Grotkopp E, Rejmánek M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. Am Nat 94:526–532

    Google Scholar 

  • Guevara-Escobar A, Tellez J, Gondalez-Sosa E (2005) Use of digital photography for analysis of canopy closure. Agrofor Syst 65:175–185

    Google Scholar 

  • Hatcher PE (2003) Impatiens noli-tangere L. J Ecol 91:147–167

    Google Scholar 

  • Hejda M (2012) What Is the impact of Impatiens parviflora on diversity and composition of herbal layer communities of temperate forests? PLoS One 7(6):e39571. doi:10.1371/journal.pone.0039571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hejda M, Pyšek P (2006) What is the impact of Impatiens glandulifera on species diversity of invaded riparian vegetation? Biol Conserv 132:143–152

    Google Scholar 

  • Hejda M, Pyšek P, Jarošík V (2009a) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403

    Google Scholar 

  • Hejda M, Pyšek P, Pergl J, Sádlo J, Chytrý M, Jarošík V (2009b) Invasion success of alien plants: do habitats affinities in the native distribution range matter? Glob Ecol Biogeogr 18:372–382

    Google Scholar 

  • Heschel MS, Donohue K, Hausman N, Schmitt J (2002) Population differentiation and natural election for water-use efficiency in Impatiens capensis (Balsaminaceae). Int J Plant Sci 163:907–912

    Google Scholar 

  • Holdredge C, Bertness MD, Von Wettberg E, Silliman BR (2010) Nutrient enrichment enhances hidden differences in phenotype to drive a cryptic plant invasion. Oikos 119:1776–1784

    Google Scholar 

  • Hulme PE, Bremner ET (2005) Assessing the impact of Impatiens glandulifera on riparian habitats: partitioning diversity components following species removal. J Appl Ecol 43:43–50

    Google Scholar 

  • Huston MA, Deangelis DL (1994) Competition and coexistence—the effect of resource transport and supply rates. Am Nat 144:954–977

    Google Scholar 

  • Käfer J, Witte JPM (2004) Cover-weighted averaging of indicator values in vegetation analyses. J Veg Sci 15:647–652

    Google Scholar 

  • Kubát K, Hrouda L, Chrtek J Jr, Kaplan Z, Kirschner J, Štěpánek J (eds) (2002) Key to the flora of the Czech Republic. Academia, Praha (in Czech)

    Google Scholar 

  • Lambdon PW, Pyšek P, Basnou C, Hejda M, Arianoutsou M, Essl F, Jarošík V, Pergl J, Winter M, Anastasiu P, Andriopoulos P, Bazos I, Brundu G, Celesti-Grapow L, Chassot P, Delipetrou P, Josefsson M, Kark S, Klotz S, Kokkoris Y, Kühn I, Marchante H, Perglová I, Pino J, Vilà M, Zikos A, Roy D, Hulme PE (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149

    Google Scholar 

  • Lhotská M, Kopecký K (1966) Zur Verbreitungsbiologie und Phytozönologie von Impatiens glandulifera Royle an den Flussystemen der Svitava, Svratka und oberen Odra. Preslia 38:376–385

    Google Scholar 

  • MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615

    Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    CAS  PubMed  Google Scholar 

  • Malíková L, Prach K (2010) Spread of alien Impatiens glandulifera along rivers invaded at different times. Ecohydrol Hydrobiol 10:81–85

    Google Scholar 

  • Maule HG, Andrews M, Watson C, Cherrill A (2000) Distribution, biomass and effect on native species of Impatiens glandulifera in a deciduous woodland in northeast England. Aspects Appl Biol 58:31–38

    Google Scholar 

  • Molina-Montenegro MA, Penuelas J, Munne-Bosch S (2012) Higher plasticity in ecophysiological traits enhances the performance and invasion success of Taraxacum officinale (dandelion) in alpine environments. Biol Invasions 14:21–33

    Google Scholar 

  • Moravcová L, Pyšek P, Jarošík V, Havlíčková V, Zákravský P (2010) Reproductive characteristics of neophytes in the Czech Republic: traits of invasive and non-invasive species. Preslia 82:365–390

    Google Scholar 

  • Morgan DC, Smith H (1979) A systematic relationship between phytochrome-controlled development and species habitat, for plants grown in simulated natural radiation. Planta 145:253–258

    CAS  PubMed  Google Scholar 

  • Morris EC, Myerscough PJ (1991) Self-thinning and competition intensity over a gradient of nutrient availability. J Ecol 79:903–923

    Google Scholar 

  • Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692

    Google Scholar 

  • Nobis M (2005) SideLook 1.1: imaging software for the analysis of vegetation structure with true-colour photographs. http://www.appleco.ch. Accessed 30 Jan 2013

  • Obidziński T, Symonides E (2000) The influence of the groundlayer structure on the invasion of small balsam (Impatiens parviflora DC.) to natural and degraded forests. Acta Soc Pol Bot 69:311–318

    Google Scholar 

  • Perglová I, Pergl J, Skálová H, Moravcová L, Jarošík V, Pyšek P (2009) Differences in germination and seedling establishment of alien and native Impatiens species. Preslia 81:357–375

    Google Scholar 

  • Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20:481–486

    PubMed  Google Scholar 

  • Pyšek P, Prach K (1995) Invasion dynamics of Impatiens glandulifera—a century of spreading reconstructed. Biol Conserv 74:41–48

    Google Scholar 

  • Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions. Springer, Berlin, pp 97–125

    Google Scholar 

  • Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Ann Rev Environ Res 35:25–55

    Google Scholar 

  • Pyšek P, Bacher S, Chytrý M, Jarošík V, Wild J, Celesti-Grapow L, Gassó N, Kenis M, Lambdon PW, Nentwig W, Pergl J, Roques A, Sádlo J, Solarz W, Vilà M, Hulme PE (2010) Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob Ecol Biogeogr 19:317–331

    Google Scholar 

  • Pyšek P, Chytrý M, Pergl J, Sádlo J, Wild J (2012a) Plant invasions in the Czech Republic: current state, introduction dynamics, invasive species and invaded habitats. Preslia 84:575–629

    Google Scholar 

  • Pyšek P, Danihelka J, Sádlo J, Chrtek J Jr, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Štajerová K, Tichý L (2012b) Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–255

    Google Scholar 

  • Rejmánek M (1996) A theory of seed plant invasiveness: the first sketch. Biol Conserv 78:171–181

    Google Scholar 

  • Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993

    PubMed  Google Scholar 

  • Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pyšek P, Hobbs RJ (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13:126–139

    Google Scholar 

  • Richardson PJ, MacDougall AS, Stanley AG, Kaye TN, Dunwiddie PW (2012) Inversion of plant dominance–diversity relationships along a latitudinal stress gradient. Ecology 93:1431–1438

    PubMed  Google Scholar 

  • Roy J (1990) In search of the characteristics of plant invaders. In: di Castri F et al (eds) Biological invasions in Europe and the Mediterranean Basin. Kluwer Academic Publishers, Dordrecht, pp 333–352

    Google Scholar 

  • Sádlo J, Chytrý M, Pyšek P (2007) Regional species pools of vascular plants in habitats of the Czech Republic. Preslia 79:303–321

    Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Google Scholar 

  • Shmida A, Ellner S (1984) Coexistence of plant species with similar niches. Vegetatio 58:29–55

    Google Scholar 

  • Skálová H, Pyšek P (2009) Germination and establishment of invasive and native Impatiens species in species-specific microsites. Neobiota 8:101–109

    Google Scholar 

  • Skálová H, Moravcová L, Pyšek P (2011) Germination dynamics and seedling frost resistance of invasive and native Impatiens species reflect local climatic conditions. Perspect Plant Ecol 13:173–180

    Google Scholar 

  • Skálová H, Havlíčková V, Pyšek P (2012) Seedling traits, plasticity and local differentiation as strategies of invasive species of Impatiens in central Europe. Ann Bot 110:1429–1438

    PubMed  Google Scholar 

  • Skálová H, Jarošík V, Dvořáčková Š, Pyšek P (2013) Effect of intra- and interspecific competition on the performance of native and invasive species of Impatiens under varying levels of shade and moisture. PLoS One 8(5):e62842. doi:10.1371/journal.pone.0062842

    PubMed Central  PubMed  Google Scholar 

  • Slavík B (1996) The genus Impatiens in the Czech Republic. Preslia 67:193–211 (in Czech)

    Google Scholar 

  • Smart SM, Scott WA (2004) Bias in Ellenberg indicator values—problems with detection of the effect of vegetation type. J Veg Sci 15:843–846

    Google Scholar 

  • Suding KN, LeJeune KD, Seastedt TR (2004) Competitive impacts and response of an invasive weed: dependencies on nitrogen and phosphorus availability. Oecologia 141:526–535

    PubMed  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, New York

    Google Scholar 

  • Thompson K, Hodgson JG, Grime JP, Rorison IH, Band SR, Spencer RE (1993) Ellenberg numbers revisited. Phytocoenologia 23:277–289

    Google Scholar 

  • Tichý J (1997) Changes in forest vegetation on Ondřejník permanent plot after thirty years. Lesnictví 43:363–373 (in Czech)

    Google Scholar 

  • Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453

    Google Scholar 

  • Tichý L, Hájek M, Zelený D (2010) Imputation of environmental variables for vegetation plots based on compositional similarity. J Veg Sci 21:88–95

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Tolasz R (ed) (2007) Atlas of climate of the Czech Republic. Český hydrometeorologický ústav, Praha (in Czech)

    Google Scholar 

  • van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245

    PubMed  Google Scholar 

  • Vervoort A, Jacquemart AL (2012) Habitat overlap of the invasive Impatiens parviflora DC with its native congener I. noli-tangere L. Phytocoenologia 42:249–257

    Google Scholar 

  • Vervoort A, Cawoy V, Jacquemart AL (2011) Comparative reproductive biology in co-occurring invasive and native Impatiens species. Int J Plant Sci 172:366

    Google Scholar 

  • Vilà M, Basnou C, Pyšek P, Josefsson M, Genovesi P, Gollasch S, Nentwig W, Olenin S, Roques A, Roy D, Hulme PE, DAISIE Partners (2010) How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ 8:135–144

    Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    PubMed  Google Scholar 

  • Vinton MA, Goergen EM (2006) Plant-soil feedbacks contribute to the persistence of Bromus inermis in tallgrass prairie. Ecosystems 9:967–976

    CAS  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawai: plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265

    Google Scholar 

  • VivianSmith G (1997) Microtopographic heterogeneity and floristic diversity in experimental wetland communities. J Ecol 85:71–82

    Google Scholar 

  • Vrchotová N, Šerá B, Krejčová J (2011) Allelopathic activity of extracts from Impatiens species. Plant Soil Environ 57:57–60

    Google Scholar 

  • Williamson M, Pyšek P, Jarošík V, Prach K (2005) On the rates and patterns of spread of alien plants in the Czech Republic, Britain and Ireland. Écoscience 12:424–433

    Google Scholar 

  • Witkowski ETF (1991) Growth and competition between seedlings of Protea repens (L) L and the alien invasive, Acacia saligna (Labill) Wendl in relation to nutrient availability. Funct Ecol 5:101–110

    Google Scholar 

  • Yoda K, Kira T, Ogawa H, Hozumi K (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. J Biol Osaka City Univ 14:106–129

    Google Scholar 

Download references

Acknowledgments

We thank Radka Pokorná and Mirek Martinec for their help in the field. Christina Alba kindly improved our English and commented on the manuscript. The work was supported by grant GACR 206/07/0668 (Czech Science Foundation), long-term research development project no. RVO 67985939 (Academy of Sciences of the Czech Republic), and institutional resources of Ministry of Education, Youth and Sports of the Czech Republic. Petr Pyšek acknowledges the support of a Praemium Academiae award from the Academy of Sciences of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Čuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čuda, J., Skálová, H., Janovský, Z. et al. Habitat requirements, short-term population dynamics and coexistence of native and invasive Impatiens species: a field study. Biol Invasions 16, 177–190 (2014). https://doi.org/10.1007/s10530-013-0512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0512-1

Keywords

Navigation