Skip to main content

Advertisement

Log in

Functional diversity and climate change: effects on the invasibility of macroalgal assemblages

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Climate-driven and biodiversity effects on the structure and functioning of ecosystems are increasingly studied as multiple stressors, which subsequently may influence species invasions. We used a mesocosm experiment to test how increases in temperature and CO2 partial pressure (pCO2) interact with functional diversity of resident macroalgal assemblages and affect the invasion success of the non-indigenous macroalga Sargassum muticum. Early settlement of S. muticum germlings was assessed in the laboratory under common environmental conditions across three monocultures and a polyculture of functional groups of native macroalgae, which had previously grown for 3 weeks under crossed treatments of temperature and pCO2. Functional diversity was a key driver shaping early settlement of the invader, with significant identity and richness effects: higher settlement occurred in low-diversity and low-stature assemblages, even after accounting for treatment biomass. Overall, early survivorship of settled germlings responded to an interaction of temperature and pCO2 treatments, with survivorship enhanced in one treatment (high pCO2 at ambient Temperature) after 3 days, and reduced in another (ambient pCO2 at high Temperature) after 10 days, although size was enhanced in this same treatment. After 6 months in the field, legacy effects of laboratory treatments remained, with S. muticum reaching higher cover in most assemblages previously subjected to ambient pCO2, but ephemeral green algae appearing disproportionately after elevated-pCO2 treatment. These results caution that invasion outcomes may change at multiple points in the life cycle under higher-CO2, higher-temperature conditions, in addition to supporting a role for intact, functionally diverse assemblages in limiting invader colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Åberg P (1990) Measuring size and choosing category size for a transition matrix study of the seaweed Ascophyllum nodosum. Mar Ecol Prog Ser 63:281–287

    Article  Google Scholar 

  • Airoldi L (2000) Effects of disturbance, life histories, and overgrowth on coexistence of algal crusts and turfs. Ecology 81:798–814

    Article  Google Scholar 

  • Allison G (2004) The influence of species diversity and stress intensity on community resistance and resilience. Ecol Monogr 74:117–134

    Article  Google Scholar 

  • Anderson MJ (2001a) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ (2001b) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:626–639

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. Primer-E, Plymouth

    Google Scholar 

  • Arenas F, Fernández C (1998) Ecology of Sargassam muticum (Phaeophyta) on the North Coast of Spain III. Reproductive ecology. Bot Mar 41:209–216

    Article  Google Scholar 

  • Arenas F, Sánchez I, Hawkins SJ, Jenkins SR (2006) The invasibility of marine algal assemblages: role of functional diversity and identity. Ecology 87:2851–2861

    Article  PubMed  Google Scholar 

  • Bertocci I, Arenas F, Matias M, Vaselli S, Araújo R, Abreu H, Pereira R, Vieira R, Sousa-Pinto I (2010) Canopy-forming species mediate the effects of disturbance on macroalgal assemblages on Portuguese rocky shores. Mar Ecol Prog Ser 414:107–116

    Article  Google Scholar 

  • Byers JE (2002) Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 97:449–458

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  PubMed  CAS  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  PubMed  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Connell SD, Russell BD (2010) The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc R Soc Lond B Biol Sci 277:1409–1415

    Article  Google Scholar 

  • Crawley MJ, Brown SL, Heard MS, Edwards GR (1999) Invasion-resistance in experimental grassland communities: species richness or species identity? Ecol Lett 2:140–148

    Article  Google Scholar 

  • Critchley AT, Farnham WF, Morrell SL (1983) A chronology of new European sites of attachment for the invasive brown alga, Sargassum muticum, 1973–1981. J Mar Biol Ass UK 63:799–811

    Article  Google Scholar 

  • Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166

    Article  Google Scholar 

  • Darling ES, Côté IM (2008) Quantifying the evidence for ecological synergies. Ecol Lett 11:1278–1286

    Article  PubMed  Google Scholar 

  • Dethier MN, Graham ES, Cohen S, Tear LM (1993) Visual versus random-point percent cover estimations: ‘objective’ is not always better. Mar Ecol Prog Ser 96:93–100

    Article  Google Scholar 

  • Deysher LE (1984) Reproductive phenology of newly introduced populations of the brown alga, Sargassum muticum (Yendo) Fensholt. Hydrobiologia 116–117:403–407

    Article  Google Scholar 

  • Deysher L, Norton TA (1982) Dispersal and colonization in Sargassum muticum (Yendo) Fensholt. J Exp Mar Biol Ecol 56:179–195

    Article  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    Article  PubMed  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  PubMed  CAS  Google Scholar 

  • Fernández C (1999) Ecology of Sargassum muticum (Phaeophyta) on the North Coast of Spain: IV. Sequence of colonization on a shore. Bot Mar 42:553–562

    Article  Google Scholar 

  • Fridley JD, Stachowicz J, Naeem S, Sax DF, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, Von Holle B (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17

    Article  PubMed  CAS  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99

    Article  PubMed  CAS  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    Article  PubMed  CAS  Google Scholar 

  • Harley CDG, Helmuth BST (2003) Local and regional scale effects of wave exposure, thermal stress, and absolute vs effective shore level on patterns of intertidal zonation. Limnol Oceanogr 48:1498–1508

    Article  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Article  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528

    Article  PubMed  CAS  Google Scholar 

  • Hofmann LC, Yildiz G, Hanelt D, Bischof K (2012) Physiological responses of the calcifying rhodophyte, Corallina officinalis (L.), to future CO2 levels. Mar Biol 159:783–792

    Article  CAS  Google Scholar 

  • Incera M, Olabarria C, Cacabelos E, César J, Troncoso JS (2011) Distribution of Sargassum muticum on the North West coast of Spain: relationships with urbanization and community diversity. Cont Shelf Res 31:488–495

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007, the physical science basis. Summary for policymakers. intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson VR, Russell BD, Fabricius KE, Brownlee C, Hall-Spencer JM (2012) Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Glob Change Biol. doi:10.1111/j.1365-2486.2012.02716.x

  • Kendrick GA (1994) Effects of propagule settlement density and adult canopy on survival of recruits of Sargassum spp. (Sargassaceae: Phaeophyta). Mar Ecol Prog Ser 103:129–140

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434

    Article  PubMed  Google Scholar 

  • Lodge DM (1993) Biological invasions: lessons for ecology. Trends Ecol Evol 8:133–137

    Article  PubMed  CAS  Google Scholar 

  • Martin S, Gattuso J-P (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Change Biol 15:2089–2100

    Article  Google Scholar 

  • McDonald JH (2009) Handbook of biological statistics, 2nd edn. Sparky House Publishing, Baltimore

    Google Scholar 

  • Monteiro C, Engelen AH, Serrão EA, Santos R (2009) Habitat differences in the timing of reproduction of the invasive alga Sargassum muticum (Phaeophyta, Sargassaceae) over tidal and lunar cycles. J Phycol 45:1–7

    Article  Google Scholar 

  • Morris S, Taylor AC (1983) Diurnal and seasonal variation in physico-chemical conditions within intertidal rock pools. Estuar Coast Shelf Sci 17:339–355

    Article  Google Scholar 

  • Norton TA (1977) The growth and development of Sargassum muticum (Yendo) Fensholt. J Exp Mar Biol Ecol 26:41–53

    Article  Google Scholar 

  • O’Connor MI (2009) Warming strengthens an herbivore–plant interaction. Ecology 90:388–398

    Article  PubMed  Google Scholar 

  • Pérez-Cirera JL, Cremades J, Bárbara I (1989) Precisiones sistemáticas y sinecológicas sobre algunas algas nuevas para Galicia o para las costas atlánticas de la Península Ibérica. An Jard Bot Madr 46:35–45

    Google Scholar 

  • Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Biol Ecol 400:278–287

    Article  CAS  Google Scholar 

  • Roleda MY, Morris JN, McGraw CM, Hurd CL (2012) Ocean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Glob Change Biol 18:854–864

    Article  Google Scholar 

  • Rueness J (1989) Sargassum muticum and other introduced japanese macroalgae: biological pollution of european coasts. Mar Pollut Bull 20:173–176

    Article  Google Scholar 

  • Ruiz GM, Fofonoff PW, Hines AH, Grosholz ED (1999) Non-indigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. Limnol Oceanogr 44:950–972

    Article  Google Scholar 

  • Russell BD, Thompson J-AI, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob Change Biol 15:2153–2162

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DW (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Sanford E (1999) Regulation of keystone predation by small changes in ocean temperature. Science 283:2095–2097

    Article  PubMed  CAS  Google Scholar 

  • Schaffelke B, Hewitt CL (2007) Impacts of introduced seaweeds. Bot Mar 50:397–417

    Article  Google Scholar 

  • Schaffelke B, Smith JE, Hewitt CL (2006) Introduced macroalgae—a growing concern. J Appl Phycol 18:529–541

    Article  Google Scholar 

  • Schiel DR, Foster MS (2006) The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Annu Rev Ecol Evol Syst 37:343–372

    Article  Google Scholar 

  • Schiel DR, Lilley SA (2011) Impacts and negative feedbacks in community recovery over eight years following removal of habitat-forming macroalgae. J Exp Mar Biol Ecol 407:108–115

    Article  Google Scholar 

  • Sorte CJB, Williams SL, Zerebecki RA (2010) Ocean warming increases threat of invasive species in a marine fouling community. Ecology 91:2198–2204

    Article  PubMed  Google Scholar 

  • Sorte CJB, Jones SJ, Miller LP (2011) Geographic variation in temperature tolerance as an indicator of potential population responses to climate change. J Exp Mar Biol Ecol 400:209–217

    Article  Google Scholar 

  • Sousa WP (1979) Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecol Monogr 49:227–254

    Article  Google Scholar 

  • Stachowicz JJ, Whitlatch RB, Osman RW (1999) Species diversity and invasion resistance in a marine ecosystem. Science 286:1577–1579

    Article  PubMed  CAS  Google Scholar 

  • Stachowicz JJ, Fried H, Osman RW, Whitlatch RB (2002a) Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology 83:2575–2590

    Article  Google Scholar 

  • Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002b) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci 99:15497–15500

    Article  PubMed  CAS  Google Scholar 

  • Steen H (2003) Intraspecific competition in Sargassum muticum (Phaeophyceae) germlings under various density, nutrient and temperature regimes. Bot Mar 46:36–43

    Article  Google Scholar 

  • Steen H, Scrosati R (2004) Intraspecific competition in Fucus serratus and F. evanescens (Phaeophyceae: Fucales) germlings: effects of settlement density, nutrient concentration, and temperature. Mar Biol 144:61–70

    Article  Google Scholar 

  • Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal-dominated communities. Oikos 69:476–498

    Article  Google Scholar 

  • Tait LW, Schiel DR (2011) Legacy effects of canopy disturbance on ecosystem functioning in macroalgal assemblages. PLoS ONE 6:e26986

    Article  PubMed  CAS  Google Scholar 

  • Thomsen MS, Wernberg T, Tuya F, Silliman BR (2009) Evidence for impacts of nonindigenous macroalgae: a meta-analysis of experimental field studies. J Phycol 45:812–819

    Article  Google Scholar 

  • Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78:81–92

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance, 9th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Vadas RL Sr, Johnson S, Norton TA (1992) Recruitment and mortality of early post-settlement stages of benthic algae. Eur J Phycol 27:331–351

    Article  Google Scholar 

  • White LF, Shurin JB (2007) Diversity effects on invasion vary with life history stage in marine macroalgae. Oikos 116:1193–1203

    Article  Google Scholar 

  • Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Biol Ecol 366:187–197

    Article  Google Scholar 

  • Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Ann Rev Ecol Evol Syst 38:327–359

    Article  Google Scholar 

  • Yendo K (1907) The Fucaceae of Japan. J Coll Sci Imp Univ Tokyo 21:1–174

    Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes, vol 65. Elsevier, New York

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Spanish Government through the Ministry of Science and Innovation-FEDER (PROJECT CGL2009-07205), by AXA-Marine Alien and Climate Change project and by FEDER (COMPETE program) and FCT through the project CLEF (PTDC/AAC-AMB/102866/2008). FP is supported by a PhD grant from the Portuguese Foundation for Science and Technology—FCT (SFRH/BD/33393/2008). We would like to thank Rosa Viejo for help with statistical analysis as well as comments and suggestions from two anonymous referees and Jennifer Ruesink as handling editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Vaz-Pinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaz-Pinto, F., Olabarria, C., Gestoso, I. et al. Functional diversity and climate change: effects on the invasibility of macroalgal assemblages. Biol Invasions 15, 1833–1846 (2013). https://doi.org/10.1007/s10530-013-0412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0412-4

Keywords

Navigation