Skip to main content
Log in

Body size and the rate of spread of invasive ladybird beetles in North America

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive species are distinguished by their rate of spread and this is thought to be associated with the ability to produce many offspring. However, it is possible that many studies do not succeed in highlighting a positive correlation between invasiveness and reproductive rate because they lack an allometric perspective. Information on the ladybird beetles introduced into North America and data on life-history traits of 30 species of ladybird beetles were used to search for a relationship between ability to invade and traits related to reproduction and dispersal. We analyzed the mechanisms responsible for the rate of spread of invasive species of the aphidophagous species of ladybird introduced into North America that became established and spread. The two largest species extended their range an order of magnitude faster than the other species. The potential reproductive rate and the speed of movement are both positively correlated with body mass, which appears to be a good predictor of the ability to spread and colonize new territory. Further studies of invasive species should therefore include an allometric perspective in order to allow comparisons between species and an assessment of the influence of reproduction and dispersal potential on the rate with which they spread when exploiting highly suitable habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alyokhin A, Sewell G (2004) Changes in a lady beetle community following the establishment of three alien species. Biol Invasions 6:463–471

    Article  Google Scholar 

  • Angalet G, Tropp JM, Eggert AN (1979) Coccinella septempunctata in the United States: recolonizations and notes on its ecology. Environ Entomol 8:896–901

    Google Scholar 

  • Beatty S, Morgan D, Gill H (2005) Role of life history strategy in the colonisation of Western Australian aquatic systems by the introduced crayfish Cherax destructor Clark, 1936. Hydrobiologia 549:219–237

    Article  Google Scholar 

  • Bickhan R, Full RJ (1993) Similarity in multilegged locomotion: bouncing like a monopode. J Comp Physiol A 173:509–517

    Google Scholar 

  • Boivin T, Rouault G, Chalon A, Candau JN (2008) Differences in life history strategies between an invasive and a competing resident seed predator. Biol Invasions 10:1013–1025

    Article  Google Scholar 

  • Bradshaw CJA, Giam XL, Tan HTW, Brook BW, Sodhi NS (2008) Threat or invasive status in legumes is related to opposite extremes of the same ecological and life-history attributes. J Ecol 96:869–883

    Article  Google Scholar 

  • Brown PMJ, Roy HE, Rothery P, Roy DB, Ware RL, Majerus MEN (2008) Harmonia axyridis in Great Britain: analysis of spread and distribution of a non-native coccinellid. In: Roy HE, Wajnberg E (eds) From biological control to invasion: the ladybird Harmonia axyridis as a model species. Springer, Berlin, pp 55–67

    Chapter  Google Scholar 

  • Burton OJ, Phillips BL, Travis JM (2010) Trade-offs and the evolution of life-histories during range expansion. Ecol Lett 13:1210–1220

    Article  PubMed  Google Scholar 

  • Chapin JP, Brou VA (1991) Harmonia axyridis (Pallas), the third species of the genus to be found in the United States. Proc Entomol Soc Wash 93:630–635

    Google Scholar 

  • Dailey PJ, Graves RC, Kingsolver JM (1978) Survey of Coleoptera collected on the common milkweed, Asclepias syriaca, at one site in Ohio. Coleopt Bull 32:223–229

    Google Scholar 

  • Davis MA (2009) Invasion biology. Oxford University Press, Oxford

    Google Scholar 

  • Daws MI, Hall J, Flynn S, Pritchard HW (2007) Do invasive species have bigger seeds? Evidence from intra- and inter-specific comparisons. S Afr J Bot 73:138–143

    Article  Google Scholar 

  • Day WH, Tatman KM (2006) Changes in the abundance of native and adventive Coccinellidae (Coleoptera) in alfalfa fields, in northern New Jersey (1993–2004) and Delaware (1999–2004), USA. Entomol News 117:491–502

    Article  Google Scholar 

  • Day WH, Prokrym DR, Ellis DR, Chianese RJ (1994) The known distribution of the predator Propylea quatuordecimpunctata (Coleoptera: Coccinellidae) in the United States, and thoughts on the origin of this species and five other exotic lady beetle in eastern North America. Entomol News 105:244–256

    Google Scholar 

  • Devin S, Beisel JN (2007) Biological and ecological characteristics of invasive species: a gammarid study. Biol Invasions 9:13–24

    Article  Google Scholar 

  • Diaz-Uriarte R, Garland T Jr (1996) Testing hypotheses of correlated evolution using phylogenetically independent contrasts: sensitivity to deviations from Brownian motion. Syst Biol 45:27–47

    Article  Google Scholar 

  • Diaz-Uriarte R, Garland T Jr (1998) Effects of branch length errors on the performance of phylogenetically independent contrasts. Syst Biol 47:654–672

    Article  PubMed  CAS  Google Scholar 

  • Dixon AFG (2000) Insect predator-prey dynamics. Ladybird beetles and biological control. Cambridge University Press, Cambridge

    Google Scholar 

  • Ellis DR, Prokrym DR, Adams RG (1999) Exotic lady beetle survey in northeastern United States: Hippodamia variegata and Propylea quatuordecimpunctata (Coleoptera: Coccinellidae). Entomol News 110:73–84

    Google Scholar 

  • Evans EW (2000) Morphology of invasion: body size patterns associated with establishment of Coccinella septempunctata in western North America. Eur J Entomol 97:469–474

    Google Scholar 

  • Evans EW (2004) Habitat displacement of North American ladybirds by an introduced species. Ecology 85:637–647

    Article  Google Scholar 

  • Full RF, Tu MS (1991) Mechanics for a rapid running insect: two-, four- and six-legged locomotion. J Exp Biol 156:215–231

    PubMed  CAS  Google Scholar 

  • Gido KB, Franssen NR (2007) Invasion of stream fishes into low trophic positions. Ecol Freshw Fish 16:457–464

    Article  Google Scholar 

  • Gordon RD (1985) The Coccinellidae (Coleoptera) of America north of Mexico. J NY Entomol Soc 93:1–912

    Google Scholar 

  • Grabowski M, Bacela K, Konopacka A (2007) How to be an invasive gammarid (Amphipoda: Gammaroidea)—comparison of life history traits. Hydrobiologia 590:75–84

    Article  Google Scholar 

  • Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506

    Article  Google Scholar 

  • Hodek I (1973) Biology of Coccinellidae. Dr W Junk NV, The Hague

    Google Scholar 

  • Hodek I, Michaud JP (2008) Why is Coccinella septempunctata so successful? (A point of view). Eur J Entomol 105:1–12

    Google Scholar 

  • Honek A, Dixon AFG, Martinkova Z (2008) Body size, reproductive allocation, and maximum reproductive rate of two species of aphidophagous Coccinellidae exploiting the same resource. Entomol Exp Appl 127:1–9

    Article  Google Scholar 

  • Horn DJ (1991) Potential impact of Coccinella septempunctata on endangered Lycaenidae (Lepidoptera) in Northwestern Ohio, USA. In: Polgar L, Chambers RJ, Dixon AFG, Hodek I (eds) Behaviour and impact of Aphidophaga. SPB Academic Publishing, The Hague, pp 159–162

    Google Scholar 

  • Kajita Y, Evans EW (2010) Relationships of body size, fecundity, and invasion success among predatory lady beetles (Coleoptera: Coccinellidae) inhabiting alfalfa fields. Ann Entomol Soc Am 103:750–756

    Article  Google Scholar 

  • Kidd KA, Nalepa CA, Day ER, Waldvogel MG (1995) Distribution of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in North Carolina and Virginia. Proc Entomol Soc Wash 97:729–731

    Google Scholar 

  • Kindlmann P, Dixon AFG (1999) Generation time ratios—determinants of prey abundance in insect predator-prey interactions. Biol Control 16:133–138

    Article  Google Scholar 

  • Kley A, Maier G (2006) Reproductive characteristics of invasive gammarids in the Rhine–Maine–Danube catchment, South Germany. Limnologia 36:79–90

    Article  Google Scholar 

  • Koch RL (2003) The multicolored Asian lady beetle, Harmonia axyridis: a review of its biology, uses in biological control, and non-target impacts. J Insect Sci 3:1–16

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology 2nd edn. Number 20 in developments in environmental modelling. Elsevier, Amsterdam

  • Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell Publishing, Oxford

    Google Scholar 

  • Maddison WP, Maddison DR (2006) Mesquite: a modular system for evolutionary analysis. Version 1.1. http://mesquiteproject.org

  • Magro A, Lecompte E, Magné F, Hemptinne J-L, Crouau-Roy B (2010) Phylogeny of ladybirds (Coleoptera: Coccinellidae): are the subfamilies monophyletic? Mol Phylogenet Evol 54:833–848

    Article  PubMed  CAS  Google Scholar 

  • Marco DE, Paez SA (2000) Invasion of Gleditsia triacanthos in Lithraea ternifolia Montane forests of central Argentina. Environ Manage 26:409–419

    Article  PubMed  Google Scholar 

  • Martel C, Guarini JM, Blanchard G, Sauriau PG, Trichet C, Robert S, Garcia-Meunier P (2004) Invasion by the marine gastropod Ocinebrellus inornatus in France. III. Comparison of biological traits with the resident species Ocenebra erinacea. Mar Biol 146:93–102

    Article  Google Scholar 

  • Marvier M, Kareiva P, Neubert MG (2004) Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a species metapopulation. Risk Anal 24:869–878

    Article  PubMed  Google Scholar 

  • McIntyre S, Martin TG, Heard KM, Kinloch J (2005) Plant traits predict impact of invading species: an analysis of herbaceous vegetation in the subtropics. Aust J Bot 53:757–770

    Article  Google Scholar 

  • Midford PE, Garland T Jr, Maddison WP (2005) PDAP package of mesquite. Version 1.07

  • Moravcova L, Perglova I, Pysĕk P, Jarosik V, Pergl J (2005) Effects of fruit position on fruit mass and seed germination in the alien species Heracleum mantegazzianum (Apiaceae) and the implications for its invasion. Acta Ecol Int J Ecol 28:1–10

    Article  Google Scholar 

  • Musser FR, Nyrop JP, Shelton AM (2004) Survey of predators and sampling method comparison in sweet corn. J Econ Entomol 97:136–144

    Article  PubMed  Google Scholar 

  • Partridge L, Harvey PH (1988) The ecological context of life history evolution. Science 241:1449–1455

    Article  PubMed  CAS  Google Scholar 

  • Phillips BL, Brown GP, Shine R (2010) Life-history evolution in range-shifting populations. Ecology 91:1617–1627

    Article  PubMed  Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65

    Article  Google Scholar 

  • Piscart C, Devin S, Beisel JN, Moreteau JC (2003) Growth-related life-history traits of an invasive gammarid species: evaluation with a Laird–Gompertz model. Can J Zool/Revue Canadienne de Zoologie 81:2006–2014

    Article  Google Scholar 

  • Prokrym DR, Pike KS, Nelson DJ (1998) Biological control of Diuraphis noxia (Homoptera: Aphididae): implementation and evaluation of natural enemies. In: Quisenberry SS, Peairs FB (eds) Response model for an introduced pest—the Russian wheat aphid. Thomas Say Publications in Entomology, USA, pp 183–208

    Google Scholar 

  • Pysĕk P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand ? In: Nentwig W (ed) Ecological studies, 193, biological invasions, pp 97–125

  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for statistical Computing, Vienna. ISBN 3-900051-07-0. URL: http://www.R-project.org

  • Reiss MJ (1989) The allometry of growth and reproduction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Richardson DM, Pysĕk P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definition. Divers Distrib 6:93–107

    Article  Google Scholar 

  • Rosecchi E, Thomas F, Crivelli AJ (2001) Can life-history traits predict the fate of introduced species? A case study on two cyprinid fish in southern France. Freshw Biol 46:845–853

    Article  Google Scholar 

  • Roy K, Jablonsky D, Valentine JW (2001) Climate change, species range limits and body size in marine bivalves. Ecol Lett 4:366–370

    Article  Google Scholar 

  • Roy K, Jablonsky D, Valentine JW (2002) Body size and invasion success in marine bivalves. Ecol Lett 5:163–167

    Article  Google Scholar 

  • Roy HE, Brown PMJ, Majerus MEN (2006) Harmonia axyridis: a successful biocontrol agent or an invasive threat? In: Eilenberg J, Hokkanen H (eds) An ecological and societal approach to biological control. Kluwer Academic Publishers, Dordrecht, pp 295–309

    Chapter  Google Scholar 

  • Schaefer PW, Dysart RJ (1988) Palearctic aphidophagous coccinellids in North America. In: Niemczyk E, Dixon AFG (eds) Ecology and effectiveness of aphidophaga. SPB Academic Publishing, The Hague, pp 99–103

    Google Scholar 

  • Schaefer PW, Dysart RJ, Specht HB (1987) North American distribution of Coccinella septempunctata (Coleoptera: Coccinellidae) and its mass appearance in coastal Delaware. Environ Entomol 16:368–373

    Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling. Why is animal size so important?. Cambridge University Press, Cambridge

    Google Scholar 

  • Shea K, Chesson P (2002) Community ecology as a framework for biological invasion. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Shine R, Brown GP, Phillips BL (2011) An evolutionary process that assembles phenotypes through space rather than through time. Proc Natl Acad Sci 108:5708–5711

    Article  PubMed  CAS  Google Scholar 

  • Soares AO, Borges I, Borges PAV, Labrie G, Lucas E (2008) Harmonia axyridis: what will stop the invader ? In: Roy HE, Wajnberg E (eds) From biological control to invasion: the ladybird Harmonia axyridis as a model species. Springer, Berlin, pp 127–145

    Chapter  Google Scholar 

  • Statzner B, Bonada N, Doledec S (2008) Biological attributes discriminating invasive from native European stream macroinvertebrates. Biol Invasions 10:517–530

    Article  Google Scholar 

  • Stewart LA, Dixon AFG, Ruzicka Z, Iperti G (1991) Clutch and egg size in ladybird beetles. Entomophaga 36:329–333

    Article  CAS  Google Scholar 

  • Tedders WL, Schaefer PW (1994) Release and establishment of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in the southeastern United States. Entomol News 105:228–243

    Google Scholar 

  • Tilman D (1990) Mechanisms of plant competition for nutrients: the elements of a predictive theory of competition. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, pp 117–141

    Google Scholar 

  • Vandenberg NJ (1990) First North American record for Harmonia quadripunctata (Pontopiddian) (Coleoptera: Coccinellidae); a lady beetle native to the Palaearctic. Proc Entomol Soc Wash 92:407–410

    Google Scholar 

  • Vila-Gispert A, Moreno-Amich R (2003) Life-history strategies of native and introduced fish species from a Mediterranean lake. Anim Biol 53:47–57

    Article  Google Scholar 

  • Wheeler AG Jr, Hoebeke ER (1981) A revised distribution of Coccinella undecimpunctata L. in eastern and western North America (Coleoptera: Coccinellidae). Coleopt Bull 35:213–216

    Google Scholar 

Download references

Acknowledgments

This paper was started when E. W. Evans was on a sabbatical leave at ENFA (France) and was further continued during research visits of A. F. G. Dixon. The laboratory studies of J-L. Hemptinne and A. Magro were funded by grant ANR-06-BDIV-008-02 (Etudes des invasions biologiques à partir d’introductions intentionnelles et non intentionnelles d’insectes). The authors thank E. Brockerhoff (Forest Research, Christchurch, New Zealand) and A. O. Soares (Universidade dos Açores, Portugal) for helpful discussions. They also express their gratitude to Emilie Lecompte (Université de Toulouse III, UMR EDB, France) for assistance in handling the phylogenetic data, and Laurent Lelli (Ecole nationale de Formation agronomique, UMR Metafor, Toulouse) for drawing the maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-L. Hemptinne.

Appendix

Appendix

See Table 3.

Table 3 The name, origin, sample size, body mass (mg) and potential reproductive rate (PRR) of the ladybird beetles (Coccinellidae, sub-family Coccinellinae) that were used for calculating the allometric relationship between the potential reproductive rate and adult body mass

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemptinne, JL., Magro, A., Evans, E.W. et al. Body size and the rate of spread of invasive ladybird beetles in North America. Biol Invasions 14, 595–605 (2012). https://doi.org/10.1007/s10530-011-0101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-011-0101-0

Keywords

Navigation