Skip to main content

Advertisement

Log in

Does larval supply explain the low proliferation of the invasive gastropod Crepidula fornicata in a tidal estuary?

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Human-mediated transport and aquaculture have promoted the establishment of non-indigenous species in many estuaries around the world over the last century. This phenomenon has been demonstrated as a major cause of biodiversity alterations, which has prompted scientists to provide explanations for the success or failure of biological invasions. Crepidula fornicata is a gastropod native from the East coast of North America which has successfully invaded many European bays and estuaries since the 19th century, with some noticeable exceptions. Its spread over Europe has been explained by a combination of human-mediated transport and natural dispersal through its long-lived planktonic larva. We here investigated whether larval supply may explain the failure in the proliferation of this species within a particular bay, the Bay of Morlaix (France). Patterns of larval distribution and larval size structure were analysed over ten sites sampled three times (20 July, 4 August and 21 August 2006), regarding characteristics of the adult population and environmental features. Our results evidenced a strong spatial structure in both larval abundance and size at the bay scale, even if larval abundances were low. In this scheme, the location of spawning adults played a critical role, with high numbers of early larvae above the main spawning location. The larval size structure further showed that settlement-stage larvae were rare, which suggested that released larvae might have been exported out of the bay. The use of an analytical model aimed to study the effect of tidal currents on the potential for larval exportation confirmed that larval retention within the bay might be low. The limitation in larval supply resulting from the interactions between spawning location and local hydrodynamics may thus impede the proliferation of this species which is well established for more than 50 years. This study provided an example of factors which may explain the failure of the transition between two major steps of biological invasions, i.e. sustainable establishment and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnay AS, Ellien C, Gentil F, Thiébaut E (2003) A model study on variations in larval supply: are populations of the polychaete Owenia fusiformis in the English Channel open or closed? Helgol Mar Res 56:229–237

    Google Scholar 

  • Barnes RSK, Coughlan J, Holmes NJ (1973) A preliminary survey of the macroscopic bottom fauna of the Solent, with particular reference to Crepidula fornicata and Ostrea edulis. Proc Malacol Soc Lond 40:253–275

    Google Scholar 

  • Bhaud M (2000) Two contradictory elements determine invertebrates recruitment: dispersion of larvae and spatial restrictions on adults. Oceanol Acta 23:409–422

    Article  Google Scholar 

  • Black KP, Gay SL, Andrews JC (1990) Residence times of neutrally-buoyant matter such as larvae, sewage or nutrients on coral reefs. Coral Reefs 9:105–114

    Article  Google Scholar 

  • Blanchard M (1995) Origine et état de la population de Crepidula fornicata (Gastropoda Prosobranchia) sur le littoral français. Haliotis 24:75–86

    Google Scholar 

  • Blanchard M (1997) Spread of the slipper limpet Crepidula fornicata (L.1758) in Europe: current state and consequences. Sci Mar 61:109–118

    Google Scholar 

  • Blanchard M (2009) Recent expansion of the slipper limpet population (Crepidula fornicata) in the Bay of Mont-Saint-Michel (Western Channel, France). Aquat Living Resour 22:11–19

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Byers JE, Pringle JM (2006) Going against the flow: retention, range limits and invasions in advective environments. Mar Ecol Prog Ser 313:27–41

    Article  Google Scholar 

  • Cabioch L (1968) Contribution à la connaissance des peuplements benthiques de la Manche occidentale. Cah Biol Mar 9:493–720

    Google Scholar 

  • Cabioch L, Douvillé JL (1979) La circulation des eaux dans la baie de Morlaix et ses abords: premières données obtenues par suivis de flotteurs dérivants. Trav St Biol Roscoff 26:11–20

    Google Scholar 

  • Cameron B, Metaxas A (2005) Invasive green crab, Carcinus maenas, on the Atlantic coast and in the Bras d’Or Lakes of Nova Scotia, Canada: larval supply and recruitment. J Mar Biol Ass U K 85:847–855

    Article  Google Scholar 

  • Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78–82

    Article  Google Scholar 

  • Chipperfield PNJ (1951) The breeding of Crepidula fornicata (L.) in the river Blackwater, Essex. J Mar Biol Ass U K 30:49–71

    Article  Google Scholar 

  • Coe WR (1936) Sexual phases in Crepidula. J Exp Zool 72:455–477

    Article  Google Scholar 

  • Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558

    Article  CAS  PubMed  Google Scholar 

  • Conq C, Dauvin JC, Lorgeré JC (1998) Température et salinité de l’eau de mer au large de Roscoff de 1991 à 1997. Cah Biol Mar 39:207–212

    Google Scholar 

  • Coum A (1979) La population de crépidules Crepidula fornicata (L. 1758) en rade de Brest: écologie et dynamique. Thèse de doctorat, Université de Bretagne Occidentale, Brest, France

  • Dame RF, Allen DM (1996) Between estuaries and the sea. J Exp Mar Biol Ecol 200:169–185

    Article  Google Scholar 

  • de Montaudouin X, Sauriau PG (1999) The proliferating Gastropoda Crepidula fornicata may stimulate macrozoobenthic diversity. J Mar Biol Ass U K 79:1069–1077

    Article  Google Scholar 

  • de Montaudouin X, Labarraque D, Giraud K, Bachelet G (2001) Why does the introduced gastropod Crepidula fornicata fail to invade Arcachon Bay (France)? J Mar Biol Ass U K 81:97–104

    Article  Google Scholar 

  • deRivera CE, Hitchcock NG, Teck SJ, Hines AH, Ruiz GM (2007) Larval development rate predicts range expansion of an introduced crab. Mar Biol 150:1275–1288

    Article  Google Scholar 

  • Deslous-Paoli JM (1985) Crepidula fornicata L. (gastéropode) dans le bassin de Marennes-Oléron: structure, dynamique et production d’une population. Oceanol Acta 8:453–460

    Google Scholar 

  • Drake JM, Lodge DM (2006) Allee effect, propagule pressure and the probability of the establishment: risk analysis for biological invasions. Biol Invasions 8:365–375

    Article  Google Scholar 

  • Dubois S, Comtet T, Retière C, Thiébaut E (2007) Distribution and retention of Sabellaria alveolata larvae (Polychaeta: Sabellariidae) in the Bay of Mont-Saint-Michel, France. Mar Ecol Prog Ser 346:243–254

    Article  CAS  Google Scholar 

  • Dunstan PK, Bax NJ (2007) How far can marine species go? Influence of population biology and larval movement on future range limits. Mar Ecol Prog Ser 344:15–28

    Article  Google Scholar 

  • Dupont L (2004) Invasion des côtes françaises par le mollusque exotique Crepidula fornicata: contribution de la dispersion larvaire et du système de reproduction au succès de la colonisation. Thèse de doctorat, Université Pierre et Marie Curie-Paris 6, Paris

  • Dupont L, Jollivet D, Viard F (2003) High genetic diversity and ephemeral drift effects in a successful introduced mollusc (Crepidula fornicata: Gastropoda). Mar Ecol Prog Ser 253:183–195

    Article  Google Scholar 

  • Dupont L, Ellien C, Viard F (2007) Limits to gene flow in the slipper limpet Crepidula fornicata as revealed by microsatellite data and a larval dispersal model. Mar Ecol Prog Ser 349:125–138

    Article  Google Scholar 

  • Edwards KP, Hare JA, Werner FE, Seim H (2007) Using 2-dimensional dispersal kernels to identify the dominant influences on larval dispersal on continental shelves. Mar Ecol Prog Ser 352:77–87

    Article  Google Scholar 

  • Ehrhold A, Blanchard M, Auffret JP, Garlan T (1998) Conséquences de la prolifération de la crépidule (Crepidula fornicata) sur l’évolution sédimentaire de la baie du Mont-Saint-Michel (Manche, France). C R Acad Sci Paris Sci Terre Planet 327:583–588

    Google Scholar 

  • Frontier S, Pichod-Viale D (1991) Ecosystèmes: structure, fonctionnement, évolution. Masson, Paris

    Google Scholar 

  • Gaines S, Roughgarden J (1985) Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proc Natl Acad Sci USA 82:3707–3711

    Article  CAS  PubMed  Google Scholar 

  • Geyer WR, Signell RP (1992) A reassessment of the role of tidal dispersion in estuaries and bays. Estuaries 15:97–108

    Article  Google Scholar 

  • Gros P, Cochard JC (1978) Biologie de Nyctiphanes couchii (Crustacea, euphasiacea) dans le secteur Nord du Golfe de Gascogne. Ann Inst Océanogr 54:25–46

    Google Scholar 

  • Jollivet D, Empis A, Baker MC, Hourdez S, Comtet T, Jouin-Toulmond C, Desbruyères D, Tyler PA (2000) Reproductive biology, sexual dimorphism, and population structure of the deep sea hydrothermal vent scale-worm, Branchipolynoe seepensis (Polychaeta: Polynoidae). J Mar Biol Ass U K 80:55–68

    Article  Google Scholar 

  • Kinlan BP, Gaines SD, Lester SE (2005) Propagule dispersal and the scales of marine community process. Diversity Distrib 11:139–148

    Article  Google Scholar 

  • Kutner MH, Nachtsheim CJ, Neter J, Li W (2004) Applied linear statistical models, 5th edn. McGraw-Hill Irwin, New York

    Google Scholar 

  • Le Cam S (2009) Modalités de la reproduction chez l’espèce hermaphrodite protandre Crepidula fornicata: paternité et changement de sexe. Thèse de doctorat, Université Pierre et Marie Curie-Paris 6, Paris

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Leppäkoski E, Olenin S (2000) Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biol Invasions 2:151–163

    Article  Google Scholar 

  • Loomis SH, Van Nieuwenhuyze W (1985) Sediment correlates to density of Crepidula fornicata Linnaeus in the Pataguanset River, Connecticut. Veliger 27:266–272

    Google Scholar 

  • Lorenzen CJ (1966) A method for the continuous measurement of in vivo chlorophyll a concentration. Deep-Sea Res 13:223–227

    Google Scholar 

  • Martin S, Thouzeau G, Chauvaud L, Jean F, Guérin L, Clavier J (2006) Respiration, calcification, and excretion of the invasive slipper limpet, Crepidula fornicata L.: implications for carbon, carbonate, and nitrogen fluxes in affected areas. Limnol Oceanogr 51:1996–2007

    Article  CAS  Google Scholar 

  • McGee BL, Targett NM (1989) Larval habitat selection in Crepidula (L.) and its effect on adult distribution patterns. J Exp Mar Biol Ecol 131:195–214

    Article  Google Scholar 

  • Naylor RL, Williams SL, Strong DR (2001) Aquaculture-a gateway for exotic species. Science 294:1655–1656

    Article  CAS  PubMed  Google Scholar 

  • Nehring S (2006) Four arguments why so many alien species settle into estuaries, with special reference to the German river Elbe. Helgol Mar Res 60:127–134

    Article  Google Scholar 

  • Paavola M, Olenin S, Leppäkoski E (2005) Are invasive species most successful in habitats of low native species richness across European brackish water seas? Est Coast Shelf Sci 64:738–750

    Article  Google Scholar 

  • Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar Ecol Prog Ser 177:269–297

    Article  Google Scholar 

  • Pechenik JA, Heyman WD (1987) Using KCl to determine size at competence for larvae of the marine gastropod Crepidula fornicata (L.). J Exp Mar Biol Ecol 112:27–38

    Article  Google Scholar 

  • Pechenik JA, Lima GM (1984) Relationship between growth, differentiation, and length of larval life for individually reared larvae of the marine gastropod, Crepidula fornicata. Biol Bull 166:537–549

    Article  Google Scholar 

  • Pedersen TM, Hansen JLS, Josefson AB, Hansen BW (2008) Mortality through ontogeny of soft-bottom marine invertebrates with planktonic larvae. J Mar Syst 73:185–207

    Article  Google Scholar 

  • Plus M, Maurer D, Stanisière JY, Dumas F (2006) Caractérisation des composantes hydrodynamiques d’une lagune mésotidale, le Bassin d’Arcachon. Report RST/LER/AR/06.007. IFREMER, Arcachon, France

    Google Scholar 

  • Quiniou F, Blanchard M (1987) État de la prolifération de la crépidule (Crepidula fornicata L.) dans le secteur de Granville (golfe normano-breton). Haliotis 16:513–526

    Google Scholar 

  • Reise K, Olenin S, Thieltges DW (2006) Are aliens threatening European aquatic coastal ecosystems? Helgol Mar Res 60:77–83

    Article  Google Scholar 

  • Richard J, Huet M, Thouzeau G, Paulet YM (2006) Reproduction of the invasive slipper limpet, Crepidula fornicata, in the Bay of Brest, France. Mar Biol 149:789–801

    Article  Google Scholar 

  • Rigal F (2009) Étude de la dynamique spatio-temporelle du nuage larvaire du gastéropode introduit Crepidula fornicata dans une baie mégatidale, la baie de Morlaix. Thèse de doctorat, Université Pierre et Marie Curie-Paris 6, Paris

  • Roughgarden J, Gaines SD, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241:1460–1466

    Article  CAS  PubMed  Google Scholar 

  • Rumrill SS (1990) Natural mortality of marine invertebrate larvae. Ophelia 32:163–198

    Google Scholar 

  • Salomon JC, Breton M (1991) Courants résiduels de marée dans la Manche. Oceanol Acta 11:47–53

    Google Scholar 

  • Sauriau PG, Pichocki-Seyfried C, Walker P, de Montaudouin X, Palud C, Héral M (1998) Crepidula fornicata L. (mollusque, gastéropode) en baie de Marennes-Oléron: cartographie des fonds par sonar à balayage latéral et estimation du stock. Oceanol Acta 21:353–362

    Article  Google Scholar 

  • Schneider DW, Stoeckel JA, Rehmann CR, Douglas Blodgett K, Sparks RE, Padilla DK (2003) A developmental bottleneck in dispersing larvae: implications for spatial population dynamics. Ecol Lett 6:352–360

    Article  Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Ann Rev Ecol Evol Syst 40:81–102

    Article  Google Scholar 

  • Simberloff D, Gibbons L (2004) Now you see them, now you don’t!—population crashes of established introduced species. Biol Invasions 6:161–172

    Article  Google Scholar 

  • Thiébaut E, Dauvin J-C, Lagadeuc Y (1992) Transport of Owenia fusiformis larvae (Annelida: Polychaeta) in the Bay of Seine. I. Vertical distribution in relation to water column stratification and ontogenic vertical migration. Mar Ecol Prog Ser 80:29–39

    Article  Google Scholar 

  • Thieltges DW, Strasser M, van Beusekom JEE, Reise K (2004) Too cold to prosper—winter mortality prevents population increase of the introduced American slipper limpet Crepidula fornicata in northern Europe. J Exp Mar Biol Ecol 311:375–391

    Article  Google Scholar 

  • Todd CD (1998) Larval supply and recruitment of benthic invertebrates: do larvae always disperse as much as we believe? Hydrobiologia 375(376):1–21

    Article  Google Scholar 

  • UNESCO (1968) Zooplankton sampling. Monographs on oceanographic methodology. UNESCO, Paris, p 174

    Google Scholar 

  • Viard F, Ellien C, Dupont L (2006) Dispersal ability and invasion success of Crepidula fornicata in a single gulf: insights from genetic markers and larval-dispersal model. Helgol Mar Res 60:144–152

    Article  Google Scholar 

  • Voisin M, Engel CR, Viard F (2005) Differential shuffling of native genetic diversity across introduced regions in a brown alga: aquaculture vs. maritime traffic effects. Proc Natl Acad Sci USA 102:5432–5437

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to our colleagues from Service Mer et Observation at the Station Biologique de Roscoff for their help in field sampling. We particularly acknowledge Laurent Lévêque who provided us with parameters calculated for the analytical model. We are grateful to Pr. Pierre Legendre for his help in statistical analyses. We thank two anonymous reviewers for their fruitful comments on an earlier version of this manuscript. FR and SDA acknowledge a PhD fellowship from the Ministère de la Recherche et de l’Enseignement Supérieur. This work was supported by the Agence Nationale de la Recherche (MIRAGE contract no NT05-3_42438).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Comtet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 21 kb)

Supplementary material 2 (PDF 154 kb)

Appendix

Appendix

The descriptions and the values of the parameters used in the analytical model are given in Table 2. Figure 6 gives the schematic representation of the study bay used in the analytical model. Two regions are considered. The region B is delimited in the north by a section of surface s 1(t). The adult population is located within the region B at a distance x of the section s 1(t). The region E is defined as the area outside the bay where the larvae released from the adult population can be exported by the tide: its width L is equal to x T  − x, where x T is the maximal tidal excursion. The surface s 1(t) of the section separating the regions B and E varies with the tidal cycle and is given by:

$$ s_{1} (t) = W \times (h + \varepsilon (t)) $$
(5)

with W the length of the region E, h the mean depth of the bay, and ε(t) the free surface elevation.

Table 2 Values used to parameterize the analytical model
Fig. 6
figure 6

Schematic view of the bay used to construct the analytical model. Meaning of the letters are presented in Table 2. The two white dots indicate the innermost and outermost spawning locations which were used in the model, with a distance within the bay of 8 and 1 km, respectively

The section of surface s 2(t) is the other section of the region E. By this section, larvae are exported outside E by the offshore residual current U. s 2(t) also varies with the tidal cycle following:

$$ s_{2} (t) = L \times (h + \varepsilon (t)) = (x_{T} - x) \times (h + \varepsilon (t)) $$
(6)

The volume V B (t) of the region B is calculated from the surface of the bay S, the mean depth of the bay h, and the free surface elevation ε(t) following the equation:

$$ V_{B} (t) = S \times (h + \varepsilon (t)) $$
(7)

and the volume V E (t) of the region E is calculated from:

$$ V_{E} (t) = W \times s_{2} (t) $$
(8)

The volume V 1 (t) exchanged between the regions B and E according to the tidal current u(t) through the section of surface s 1(t) and during a time step Δt is defined by:

$$ V_{1} (t) = u(t) \times s_{1} (t) \times \Updelta t $$
(9)

and the volume V 2 (t) removed from region E by the residual current U through the section of surface s 2(t) during a time step Δt is defined by:

$$ V_{2} (t) = U \times s_{2} (t) \times \Updelta t $$
(10)

Using those equations, the final equations of the analytical model are:

  • During ebb:

    $$ N_{B} (t + \Updelta t) = N_{B} (t) \times \left( {1 - {\frac{u(t) \times W \times \Updelta t}{S}}} \right) $$
    (11)
    $$ N_{E} (t + \Updelta t) = N_{E} (t) \times \left( {1 - {\frac{U \times \Updelta t}{W}}} \right) \,+\, {\frac{u(t) \times W \times \Updelta t}{S}} \times N_{B} (t) $$
    (12)
  • During flow:

    $$ N_{B} (t + \Updelta t) = N_{B} (t) + {\frac{u(t) \times \Updelta t}{{(x_{T} - x)}}} \times N_{E} (t) $$
    (13)
    $$ N_{E} (t + \Updelta t) = N_{E} (t) \times \left( {1 - {\frac{U \times \Updelta t}{W}} - {\frac{u(t) \times \Updelta t}{{(x_{T} - x)}}}} \right) $$
    (14)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigal, F., Viard, F., Ayata, SD. et al. Does larval supply explain the low proliferation of the invasive gastropod Crepidula fornicata in a tidal estuary?. Biol Invasions 12, 3171–3186 (2010). https://doi.org/10.1007/s10530-010-9708-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-010-9708-9

Keywords

Navigation