Skip to main content

Advertisement

Log in

Effects of Morella faya tree invasion on aboveground carbon storage in Hawaii

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The negative effects of biological invasion are often the focus of ecological studies, but few have considered potential positive impacts, such as increased carbon storage, resulting from invasion. We combined airborne imaging spectrometer and LiDAR (light detection and ranging) observations with field measurements to assess if the highly invasive nitrogen-fixing tree Morella faya alters canopy 3-D structure and aboveground biomass (AGB) along a 1,500 mm precipitation gradient in Hawaii. Airborne analysis of canopy water content, leaf nitrogen concentration, fractional canopy cover, and vegetation height facilitated mapping of native- and Morella-dominated canopies in rainforest, woodland–savanna and shrubland ecosystems, with Morella detection errors ranging from 0 to 13.4%. Allometric equations were developed to relate the combined LiDAR and spectral data to field-based AGB estimates (r 2 = 0.97, P < 0.01), and to produce a map of biomass stocks throughout native and invaded ecosystems. The structure of the invasive Morella canopies varied by ecosystem type, and the invader shaded out native understory plants in rainforest zones. Despite a 350% increase in AGB going from shrubland to rainforest, Morella did not increase average AGB in any ecosystem it invaded. Furthermore, spatial distributions of biomass indicated that Morella decreased maximum AGB in the woodland–savanna ecosystems. We conclude that Morella tree invasion does not enhance aboveground carbon stocks in any ecosystem it invades in Hawaii, thereby minimizing its contribution to this potentially important ecosystem service. We also found that the fusion of spectral and LiDAR remote sensing provided canopy chemical and structural data facilitating a landscape assessment of how biological invasion alters on carbon stocks and other ecosystem properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboal JR, Arevalo JR, Fernandez A (2005) Allometric relationships of different tree species and stand above ground biomass in the Gomera laurel forest (Canary Islands). Flore 200:264–274

    Google Scholar 

  • Aplet GH (1990) Alteration of earthworm community biomass by the alien Myrica faya in Hawai’i. Oecologia 82:414–416. doi:10.1007/BF00317491

    Article  Google Scholar 

  • Aplet GH, Vitousek PM (1994) An age-altitude matrix analysis of Hawaiian rain-forest succession. J Ecol 82:137–147. doi:10.2307/2261393

    Article  Google Scholar 

  • Asner GP, Heidebrecht KB (2002) Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: comparing multispectral and hyperspectral observations. Int J Remote Sens 23:3939–3958. doi:10.1080/01431160110115960

    Article  Google Scholar 

  • Asner GP, Vitousek PM (2005) Remote analysis of biological invasion and biogeochemical change. Proc Natl Acad Sci USA 102:4383–4386. doi:10.1073/pnas.0500823102

    Article  CAS  PubMed  Google Scholar 

  • Asner GP, Archer S, Hughes RF, Ansley RJ, Wessman CA (2003) Net changes in regional woody vegetation cover and carbon storage in Texas drylands, 1937–1999. Glob Change Biol 9:316–335. doi:10.1046/j.1365-2486.2003.00594.x

    Article  Google Scholar 

  • Asner GP, Elmore AJ, Hughes FR, Warner AS, Vitousek PM (2005) Ecosystem structure along bioclimatic gradients in Hawai’i from imaging spectroscopy. Remote Sens Environ 96:497–508. doi:10.1016/j.rse.2005.04.008

    Article  Google Scholar 

  • Asner GP, Knapp DE, Kennedy-Bowdoin T, Jones MO, Martin RE, Boardman J, Field CB (2007) Carnegie airborne observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging (LiDAR) for three-dimensional studies of ecosystems. J Appl Remote Sens 1. doi:10.1117/1.2794018

  • Asner GP, Hughes RF, Varga TA, Knapp DE, Kennedy-Bowdoin T (2008a) Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems 12. doi:10.1007/s10021-008-9221-5

  • Asner GP, Jones MO, Martin RE, Knapp DE, Hughes RF (2008b) Remote sensing of native and invasive species in Hawaiian forests. Remote Sens Environ 112:1912–1926. doi:10.1016/j.rse.2007.02.043

    Article  Google Scholar 

  • Asner GP, Hughes RF, Vitousek PM, Knapp DE, Kennedy-Bowdoin T, Boardman J, Martin RE, Eastwood M, Green RO (2008b) Invasive plants transform the 3-D structure of rainforests. Proc Natl Acad Sci USA. doi:10.1073/pnas.0710811105

  • Boelman NT, Asner GP, Hart PJ, Martin RE (2007) Multi-trophic invasion resistance in Hawaii: bioacoustics, field surveys, and airborne remote sensing. Ecol Appl 17:2137–2144. doi:10.1890/07-0004.1

    Article  PubMed  Google Scholar 

  • Brown S, Gillespie AJR, Lugo AE (1989) Biomass estimation methods for tropical forests with application to forest inventory. For Sci 35:881–902

    Google Scholar 

  • Chave J, Chust G, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. In: Malhi Y, Phillips O (eds) Tropical forests and global atmospheric change. London, Oxford University Press, pp 155–166

    Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–90. doi:10.1007/s00442-005-0100-x

    Article  CAS  PubMed  Google Scholar 

  • Drake JB, Dubayah RO, Knox RG, Clark DB, Blair JB (2002) Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sens Environ 81:378–392. doi:10.1016/S0034-4257(02)00013-5

    Article  Google Scholar 

  • Drake JB, Knox RG, Dubayah RO, Clark DB, Condit R, Blair JB, Hofton M (2003) Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensing: Factors affecting the generality of relationships. Glob Ecol Biogeogr 12:147–159. doi:10.1046/j.1466-822X.2003.00010.x

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems (N Y, Print) 6:503–523. doi:10.1007/s10021-002-0151-3

    Article  CAS  Google Scholar 

  • Elton CS (1958) The Ecology of Invasions by Animals and Plants. Methuen and Co., London

    Google Scholar 

  • Giambelluca TW, Nullet MA, Schroeder TA (1986) Rainfall atlas of Hawaii. Department of Land and Natural Resources, Honolulu

    Google Scholar 

  • Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri BE, Chovit CJ, Solis MS, Olah MR, Williams O (1998) Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS). Remote Sens Environ 65:227–248. doi:10.1016/S0034-4257(98)00064-9

    Article  Google Scholar 

  • Hall SJ, Asner GP (2007) Biological invasion alters regional nitrogen-oxide emissions from tropical rainforests. Glob Change Biol 13:2143–2160. doi:10.1111/j.1365-2486.2007.01410.x

    Article  Google Scholar 

  • Huang C, Marsh S, McClaran M, Archer S (2007) Post-fire stand structure in a semi-arid savanna: cross-scale challenges estimating biomass. Ecol Appl 17:1899–1910. doi:10.1890/06-1968.1

    Article  PubMed  Google Scholar 

  • Hughes RF, Vitousek PM, Tunison T (1991) Alien grass invasion and fire in the seasonal submontane zone of Hawai’i. Ecology 72:743–746. doi:10.2307/2937215

    Article  Google Scholar 

  • Keeling CD (1997) Climate change and carbon dioxide: an introduction. Proc Natl Acad Sci USA 94:8273–8274. doi:10.1073/pnas.94.16.8273

    Article  CAS  PubMed  Google Scholar 

  • Lefsky MA, Cohen WB, Acker SA, Parker GG, Spies TA, Harding D (1999) Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sens Environ 70:339–361. doi:10.1016/S0034-4257(99)00052-8

    Article  Google Scholar 

  • Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST (2002a) Lidar remote sensing of above-ground biomass in three biomes. Glob Ecol Biogeogr 11:393–399. doi:10.1046/j.1466-822x.2002.00303.x

    Article  Google Scholar 

  • Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002b) Lidar remote sensing for ecosystem studies. Bioscience 52:19–30. doi:10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2

    Article  Google Scholar 

  • Litton CM, Kauffman JB (2008) Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica 40:313–320. doi:10.1111/j.1744-7429.2007.00383.x

    Article  Google Scholar 

  • Litton CM, Sandquist DR, Cordell S (2006) Effects of non-native grass invasion on aboveground carbon pools and tree population structure in a tropical dry forest of Hawaii. For Ecol Manage 231:105–113. doi:10.1016/j.foreco.2006.05.008

    Article  Google Scholar 

  • Loh RK, Daehler CC (2008) Influence of woody invader control methods and see availability on native and invasive species establishment in a Hawaiian forest. Biol Invasions 10:805–819. doi:10.1007/s10530-008-9237-y

    Article  Google Scholar 

  • Mack MC, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Trends Ecol Evol 13:195–198. doi:10.1016/S0169-5347(97)01286-X

    Article  Google Scholar 

  • Mack MC, D’Antonio CM, Ley RE (2001) Alteration of ecosystem nitrogen dynamics by exotic plants: a case study of C-4 grasses in Hawaii. Ecol Appl 11:1323–1335

    Google Scholar 

  • Morisette JT, Jarnevich CS, Ullah A, Cai W, Pedelty J, Gentle JE, Stohlgren TJ, Schnase JL (2006) A tamarisk habitat suitability map for the continental United States. Front Ecol Environ 4:11–17. doi:10.1890/1540-9295(2006)004[0012:ATHSMF]2.0.CO;2

    Article  Google Scholar 

  • Mueller-Dombois D (1994) Vegetation dynamics and the evolution of Metrosideros polymorpha in Hawaii. Phytocoenologia 24:609–614

    Google Scholar 

  • Popescu SC, Wynne RH, Scrivani JA (2004) Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA. For Sci 50:551–565

    Google Scholar 

  • Reyes G, Brown S, Chapman J, Lugo AE (1992). Wood densities of tropical tree species. General Technical Report S0-88 US Forest Service, US Department of Agriculture, New Orleans, Louisiana, USA

  • Roberts DA, Green RO, Adams JB, Cothern JS, Sabol DE, Smith MO (1994) Temporal and spatial relationships between topography, atmospheric water vapor, liquid water and vegetation endmember fractions determined using AVIRIS. In IGARSS 94: Proceedings of the International Geosciences and Remote Sensing Symposium, Pasadena, CA, pp.2366–2368

  • Roberts DA, Gardner M, Church R, Ustin S, Scheer G, Green RO (1998) Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens Environ 65:267–279. doi:10.1016/S0034-4257(98)00037-6

    Article  Google Scholar 

  • Smith CW (1985) Impact of alien plants on Hawaii’s native biota. In: Stone CP, Scott JM (eds) Hawaii’s terrestrial ecosystems: preservation and management. University of Hawaii, Cooperative National Park Resources Study Unit, Honolulu

    Google Scholar 

  • Stearns HT (1985) Geology of the State of Hawaii, 2nd edn. Pacific Books, Palo Alto

    Google Scholar 

  • Stemmermann L (1983) Ecological studies of Hawaiian Metrosideros in a successional context. Pac Sci 37:361–373

    Google Scholar 

  • Townsend PA, Foster JR (2002) Comparison of EO-1 Hyperion to AVIRIS for mapping forest composition in the Appalachian Mountains, USA. International Geoscience and Remote Sensing Symposium (IGARSS) 2:793

  • Ustin SL, Roberts DA, Gamon JA, Asner GP, Green RO (2004) Using imaging spectroscopy to study ecosystem processes and properties. Bioscience 54:523–534. doi:10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2

    Article  Google Scholar 

  • Varga TA, Asner GP (2008) Hyperspectral and lidar remote sensing of fire fuels in Hawaii Volcanoes National Park. Ecol Appl 18:613–623. doi:10.1890/07-1280.1

    Article  PubMed  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265. doi:10.2307/1942601

    Article  Google Scholar 

  • Vitousek PM, Walker LR, Whiteacre LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804. doi:10.1126/science.238.4828.802

    Article  PubMed  Google Scholar 

  • Whiteaker LD, Gardner DE (1985). The distribution of Myrica faya Ait in the State of Hawaii. Technical Report 55, Cooperative Park Studies Unit, University of Hawaii

Download references

Acknowledgments

We thank T. Varga, J. Mascaro, and G. Sanchez for their work on the field measurements. Access to field sites was provided by the US National Park Service. This study was supported by NASA Terrestrial Ecology and Biodiversity Program grant NNG-06-GI-87G and the Carnegie Institution. The Carnegie Airborne Observatory is supported by the W.M. Keck Foundation and William Hearst III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory P. Asner.

Appendices

Appendices

Appendix 1

See Fig. 6.

Fig. 6
figure 6

Natural color composite image showing the study area in Hawaii Volcanoes National Park (HAVO) on Hawaii Island. Locations of field biomass plots are shown as yellow dots, along with precipitation isohyets in 500 mm yr−1 increments

Appendix 2

See Table 5.

Table 5 Plot data on species dominance, stem counts, and estimated aboveground biomass

Appendix 3

See Table 6.

Table 6 Allometric equations used to estimate aboveground biomass (AGB) at the plot level

Appendix 4

See Fig. 7.

Fig. 7
figure 7

a Canopy fractional cover of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare substrate/shade, b total canopy water content, c upper-canopy leaf N concentration, and d vegetation height. Panels a–c were derived from imaging spectrometer data, and panel d was derived from the LiDAR measurements

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asner, G.P., Martin, R.E., Knapp, D.E. et al. Effects of Morella faya tree invasion on aboveground carbon storage in Hawaii. Biol Invasions 12, 477–494 (2010). https://doi.org/10.1007/s10530-009-9452-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-009-9452-1

Keywords

Navigation