Skip to main content
Log in

Effect of an invasive grass on ambient rates of decomposition and microbial community structure: a search for causality

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

In situ decomposition of above and belowground plant biomass of the native grass species Andropogon glomeratus (Walt.) B.S.P. and exotic Imperata cylindrica (L.) Beauv. (cogongrass) was investigated using litter bags over the course of a 12 month period. The above and belowground biomass of the invasive I. cylindrica always decomposed faster than that of the native A. glomeratus. Also, belowground biomass of both species decomposed at a consistently faster rate when placed within an invaded area consisting of a monotypic stand of I. cylindrica as opposed to within a native plant assemblage. However, there was no similar such trend observed in the aboveground plant material. The microbial communities associated with the invaded sites often differed from those found in the native vegetation and provide a possible causal mechanism by which to explain the observed differences in decomposition rates. The microbial communities differed not only compositionally, as indicated by ordination analyses, but also functionally with respect to enzymatic activity essential to the decomposition process. This study supports the growing consensus that invasive plant species alter normal ecological processes and highlights a possible mechanism (alteration of microbial assemblages) by which I. cylindrica may alter an ecosystem process (decomposition).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449. doi:10.2307/3546886

    Article  Google Scholar 

  • Allison SD, Vitousek PM (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawaii. Oecologia 141:612–619. doi:10.1007/s00442-004-1679-z

    Article  PubMed  Google Scholar 

  • Ashton IW, Hyatt LA, Howe KM, Gurevitch J, Lerdau MT (2005) Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol Appl 15:1263–1272. doi:10.1890/04-0741

    Article  Google Scholar 

  • Bradford MA, Jones TH, Bardgett RD, Black HIJ, Boag B, Bonkowski M et al (2002) Impacts of soil faunal community composition on model grassland ecosystems. Science 298:615–618. doi:10.1126/science.1075805

    Article  PubMed  CAS  Google Scholar 

  • Brooks ML, D’Antonio CM, Richardson DM, DiTomaso JM, Grace JB, Hobbs RJ et al (2004) Effects of invasive alien plants on fire regimes. Bioscience 54:677–688. doi:10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2

    Article  Google Scholar 

  • Clarke KR, Somerfield PJ, Chapman MG (2006) On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. J Exp Mar Biol Ecol 330:55–80. doi:10.1016/j.jembe.2005.12.017

    Article  Google Scholar 

  • Dwass M (1957) Modified randomization tests for non-parametric hypotheses. Ann Math Stat 28:181–187. doi:10.1214/aoms/1177707045

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems (NY, Print) 6:503–523. doi:10.1007/s10021-002-0151-3

    Article  CAS  Google Scholar 

  • Fisher RA (1935) The design of experiments. Hafner, New York

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.1111/j.1365-294X.1993.tb00005.x

    Article  PubMed  CAS  Google Scholar 

  • Gordon DR (1998) Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. Ecol Appl 8:975–989. doi:10.1890/1051-0761(1998)008[0975:EOINIP]2.0.CO;2

    Article  Google Scholar 

  • Grime JP, Mackey JM, Miller SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosm. Nature 328:420–422. doi:10.1038/328420a0

    Article  Google Scholar 

  • Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying soil microbial communities. Ecol Lett 8:976–985. doi:10.1111/j.1461-0248.2005.00802.x

    Article  Google Scholar 

  • Hawkes CV, Belnap J, Antonio CD, Firestone MK (2006) Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant Soil 281:369–380. doi:10.1007/s11104-005-4826-3

    Article  CAS  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in a Alaskan tundra. Ecol Monogr 66:503–522. doi:10.2307/2963492

    Article  Google Scholar 

  • Hobbie SE, Vitousek PM (2000) Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:1867–1877

    Article  Google Scholar 

  • Holly DC, Ervin GN (2006) Characterization and quantitative assessment of interspecific and intraspecific penetration of belowground vegetation by cogongrass (Imperata cylindrica (L.) Beauv.) rhizomes. Weed Biol Manage 6:120–123. doi:10.1111/j.1445-6664.2006.00198.x

    Article  Google Scholar 

  • Jackson CR, Vallaire SC (2007) Microbial activity and decomposition of fine particulate organic matter in a Louisiana cypress swamp. J North Am Benthol Soc 26:742–752. doi:10.1899/07-020R1.1

    Article  Google Scholar 

  • Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3:532–542. doi:10.1046/j.1462-2920.2001.00221.x

    Article  PubMed  CAS  Google Scholar 

  • Jackson EF, Echlin HL, Jackson CR (2006) Changes in the phyllosphere community of the resurrection fern, Polypodium polypodioides, associated with rainfall and wetting. FEMS Microbiol Ecol 58:236–246. doi:10.1111/j.1574-6941.2006.00152.x

    Article  PubMed  CAS  Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert R, Booth RE, Grime JP et al (2003) Plant communities affect Arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515. doi:10.1046/j.1469-8137.2003.00938.x

    Article  Google Scholar 

  • Kirker GT (2008) Effects of chlorothalonil (CTN) and butylated hydroxytoluene (BHT) on microbial communities involved in the deterioration of wood using terminal restriction fragment length polymorphism (T-RFLP) analysis. Doctoral Dissertation, Mississippi State University, 160 pp

  • Klironomos JN (2003) Variation in plant response to native and exotic Arbuscular mycorrhizal fungi. Ecology 84:2292–2301. doi:10.1890/02-0413

    Article  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Häggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166

    Google Scholar 

  • Lavergne C, Rameau J, Figier J (1999) The invasive woody weed Ligustrum robustum subsp. walkeri threatens native forests on La Reunion. Biol Invasions 1:377–392. doi:10.1023/A:1010001529227

    Article  Google Scholar 

  • Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C et al (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    Article  PubMed  CAS  Google Scholar 

  • Lippincott CL (2000) Effects of I. cylindrical (cogongrass) invasions on fire regimes in Florida sandhill. Nat Areas J 20:140–149

    Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    PubMed  CAS  Google Scholar 

  • MacDonald GE (2004) Cogongrass (Imperata cylindrica)—biology, ecology, and management. Crit Rev Plant Sci 23:367–380. doi:10.1080/07352680490505114

    Article  Google Scholar 

  • Machery-Nagel (2004a) Total DNA purification from plant: user manual for Nucleospin® DNA Plant Kit Rev 3. Machery Nagel. Duren, Germany

  • Machery-Nagel (2004b) PCR clean-up gel extraction. User manual for Nucleospin® Extract II. Rev 01. Machery Nagel. Duren, Germany

  • Mack M, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Trends Ecol Evol 13:195–198. doi:10.1016/S0169-5347(97)01286-X

    Article  Google Scholar 

  • Martin PH (1999) Norway maple (Acer platanoides) invasion of a natural forest stand: understory consequences and regeneration pattern. Biol Invasions 1:215–222. doi:10.1023/A:1010084421858

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon

  • Meentemeyer V (1978) Macroclimate and lignin control of hardwood leaf litter decomposition dynamics. Ecology 59:465–472. doi:10.2307/1936576

    Article  CAS  Google Scholar 

  • Muyzer G, Waal ECD, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Pereira AP, Graca MAS, Molles M (1998) Leaf litter decomposition in relation to litter physio-chemical properties, fungal biomass, arthropod colonization, and geographical origin of plant species. Pedobiologia (Jena) 42:316–327

    Google Scholar 

  • Pitman EJG (1937) Significance tests which may be applied to samples from any population. J Roy Stat Soc Suppl 4:119–130 and 225–232 (parts I and II)

    Google Scholar 

  • Pitman EJG (1938) Significance tests which may be applied to samples from any population. Part III. The analysis of variance test. Biometrika 29:322–335

    Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth-promoting rhizobacteria (PGPR), Arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol 136:667–677. doi:10.1046/j.1469-8137.1997.00786.x

    Article  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754. doi:10.1111/j.1461-0248.2004.00620.x

    Article  Google Scholar 

  • Shilling DG, Bewick TA, Gaffney JF, McDonald SK, Chase CA, Johnson ERRL (1997) Ecology, physiology, and management of cogongrass (Imperata cylindrica). Final Report. Florida Institute of Phosphate Research. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

    Google Scholar 

  • Tabor P (1949) Cogongrass, Imperata cylindrica (L.) Beauv., in the southeastern United States. Agron J 41:270

    Google Scholar 

  • Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71:579–591. doi:10.2136/sssaj2006.0318

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72. doi:10.1038/23932

    Article  CAS  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawaii: plant demography, nitrogen fixation and ecosystem effects. Ecol Monogr 59:247–265. doi:10.2307/1942601

    Article  Google Scholar 

  • Vitousek PM, Walker L, Whiteaker L, Mueller-Dombois D, Matson P (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804. doi:10.1126/science.238.4828.802

    Article  PubMed  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Wedin DA, Tilman D (1990) Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84:433–441

    Google Scholar 

  • Westover KM, Kennedy AC, Kelley SE (1997) Patterns of rhizosphere microbial community structure associated with co-occurring plant species. J Ecol 85:863–873. doi:10.2307/2960607

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Whitney GG (1991) Relation of plant species to substrate, landscape position, and aspect in north central Massachusetts. Can J For Res 21:1245–1252. doi:10.1139/x91-173

    Article  Google Scholar 

  • Wilcut JW, Truelove B, Davis DE, Williams JC (1988) Temperature factors limiting the spread of cogongrass (Imperata cylindrica) and torpedograss (Panicum repens). Weed Sci 36:49–55

    Google Scholar 

  • Windham L, Ehrenfeld JG (2003) Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh. Ecol Appl 13:883–896. doi:10.1890/02-5005

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate being granted access to the Nature Conservancy’s Deaton Reserve where the field component of this work took place and to Becky Stowe who provided assistance in accessing the site. Lucas Majure provided assistance in the field and Rachel White aided in litter bag construction. This research was supported in part by grants from the United States Geological Survey Biological Resources Discipline (#04HQAG0135) and the United States Department of Agriculture (2006-03613 and 2008-35320-18679) to GNE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Christopher Holly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holly, D.C., Ervin, G.N., Jackson, C.R. et al. Effect of an invasive grass on ambient rates of decomposition and microbial community structure: a search for causality. Biol Invasions 11, 1855–1868 (2009). https://doi.org/10.1007/s10530-008-9364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-008-9364-5

Keywords

Navigation