Skip to main content
Log in

Green synthesis of allicin based hybrid nanoflowers with evaluation of their catalytic and antimicrobial activities

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

Although organic–inorganic hybrid nanoflowers (hNFs) with much enhanced catalytic activity and stability were fabricated using proteins and enzymes, in this study, for the first time, we report synthesis of allicin and copper ion (Cu2+) coordinated NFs and investigate their peroxidase-like and antimicrobial activities.

Results

The allicin (active ingredient of Allium sativum) and Cu2+ was acted as an organic and inorganic part, respectively for synthesis of the Cu-hNFs. The hNFs were characterized by various techniques. Spherical, uniform, mono-dispersed and flower-like-shaped morphology of the hNFs (synthesized at pH 5) were imaged by scanning electron microscopy. The presence of Cu metal in the hNFs was detected by energy dispersive X-ray spectroscopy. Characteristic bonds stretching and bending for structural analysis of the hNFs were carried out by Fourier transform infrared spectrometry. In terms of applications, the hNFs showed quite effective peroxidase-like activity towards to guaiacol (used as a model substrate) in the presence of hydrogen peroxide (H2O2) through Fenton reaction. We demonstrated that the NFs exhibited ~ 200% and ~ 500% higher catalytic activities in 1 h (hr) and 3 h (hrs) than their initial catalytic activity measured in 5 minute (min). Additionally, effective antibacterial properties of the Cu-hNFs were observed against fish pathogen bacteria (Aeromonas hydrophila, Vibrio parahaemolyticus, and Lactococcus garvieae).

Conclusions

We finally demonsrated that allicin based hybrid nanomaterial can be prepared by a relatively cheap, one step, easy and eco-friendly method. The allicin hNFs can be considered as novel Fenton agent for peroxidase like activity and bactericidal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by a grant from the Erciyes University Scientific Research Office (THD-2018-8069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Doğan Koca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koca, F.D., Demirezen Yilmaz, D., Ertas Onmaz, N. et al. Green synthesis of allicin based hybrid nanoflowers with evaluation of their catalytic and antimicrobial activities. Biotechnol Lett 42, 1683–1690 (2020). https://doi.org/10.1007/s10529-020-02877-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-02877-2

Keywords

Navigation