Skip to main content
Log in

Evolution of LuxR solos in bacterial communication: receptors and signals

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Cell–cell communication in bacteria needs chemical signals and cognate receptors. Many Gram-negative bacteria use acyl-homoserine lactones (AHLs) and cognate LuxR-type receptors to regulate their quorum sensing (QS) systems. The signal synthase-receptor (LuxI–LuxR) pairs may have co-evolved together. However, many LuxR solo (orphan LuxR) regulators sense more signals than just AHLs, and expand the regulatory networks for inter-species and inter-kingdom communication. Moreover, there are also some QS regulators from the TetR family. LuxR solo regulators might have evolved by gene duplication and horizontal gene transfer. An increased understanding of the evolutionary roles of QS regulators would be helpful for engineering of cell–cell communication circuits in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alguel Y, Meng C, Teran W, Krell T, Ramos JL, Gallegos MT, Zhang X (2007) Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials. J Mol Biol 369:829–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amin SA et al (2015) Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522:98

    CAS  PubMed  Google Scholar 

  • Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44:W344–W350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ball AS, Chaparian RR, van Kessel JC (2017) Quorum sensing gene regulation by LuxR/HapR master regulators in Vibrios. J Bacteriol 199:e00105–e00117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biarnes-Carrera M, Breitling R, Takano E (2015) Butyrolactone signalling circuits for synthetic biology. Curr Opin Chem Biol 28:91–98

    CAS  PubMed  Google Scholar 

  • Biasini M et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bottomley MJ, Muraglia E, Bazzo R, Carfi A (2007) Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J Biol Chem 282:13592–13600

    CAS  PubMed  Google Scholar 

  • Brachmann AO et al (2013) Pyrones as bacterial signaling molecules. Nat Chem Biol 9:573–573

    CAS  PubMed  Google Scholar 

  • Brameyer S, Heermann R (2017) Quorum sensing and LuxR solos in Photorhabdus. Curr Top Microbiol Immunol 402:103–119

    PubMed  Google Scholar 

  • Brameyer S, Kresovic D, Bode HB, Heermann R (2015) Dialkylresorcinols as bacterial signaling molecules. Proc Natl Acad Sci USA 112:572–577

    CAS  PubMed  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G et al (2011) A strategy for antagonizing quorum sensing. Mol Cell 42:199–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549

    CAS  PubMed  Google Scholar 

  • Chugani S, Greenberg EP (2014) An evolving perspective on the Pseudomonas aeruginosa orphan quorum sensing regulator QscR. Front Cell Infect Microbiol 4:152

    PubMed  PubMed Central  Google Scholar 

  • Coutinho BG, Mevers E, Schaefer AL, Pelletier DA, Harwood CS, Clardy J, Greenberg EP (2018) A plant-responsive bacterial-signaling system senses an ethanolamine derivative. Proc Natl Acad Sci USA 115:9785–9790

    PubMed  PubMed Central  Google Scholar 

  • Cuthbertson L, Nodwell JR (2013) The TetR family of regulators. Microbiol Mol Biol Rev 77:440–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel R, Rubens JR, Sarpeshkar R, Lu TK (2013) Synthetic analog computation in living cells. Nature 497:619–623

    CAS  PubMed  Google Scholar 

  • De Silva RS, Kovacikova G, Lin W, Taylor RK, Skorupski K, Kull FJ (2007) Crystal structure of the Vibrio cholerae quorum-sensing regulatory protein HapR. J Bacteriol 189:5683–5691

    PubMed  PubMed Central  Google Scholar 

  • Frenois F, Engohang-Ndong J, Locht C, Baulard AR, Villeret V (2004) Structure of EthR in a ligand bound conformation reveals therapeutic perspectives against tuberculosis. Mol Cell 16:301–307

    CAS  PubMed  Google Scholar 

  • Gonzalez JF, Myers MP, Venturi V (2013) The inter-kingdom solo OryR regulator of Xanthomonas oryzae is important for motility. Mol Plant Pathol 14:211–221

    CAS  PubMed  Google Scholar 

  • Gonzalez JF, Venturi V (2013) A novel widespread interkingdom signaling circuit. Trends Plant Sci 18:167–174

    CAS  PubMed  Google Scholar 

  • Gray KM, Garey JR (2001) The evolution of bacterial LuxI and LuxR quorum sensing regulators. Microbiology 147:2379–2387

    CAS  PubMed  Google Scholar 

  • Ha C, Park SJ, Im SJ, Park SJ, Lee JH (2012) Interspecies signaling through QscR, a quorum receptor of Pseudomonas aeruginosa. Mol Cells 33:53–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao G, Burr TJ (2006) Regulation of long-chain N-acyl-homoserine lactones in Agrobacterium vitis. J Bacteriol 188:2173–2183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabbara S, Schmulling T, Papon N (2018) CHASEing cytokinin receptors in plants, bacteria, fungi, and beyond. Trends Plant Sci 23:179–181

    CAS  PubMed  Google Scholar 

  • Kim BS et al (2018) QStatin, a selective inhibitor of quorum sensing in Vibrio species. MBio 9:e02262–e02217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y et al (2010) Crystal structure of SmcR, a quorum-sensing master regulator of Vibrio vulnificus, provides insight into its regulation of transcription. J Biol Chem 285:14020–14030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lerat E, Moran NA (2004) The evolutionary history of quorum-sensing systems in bacteria. Mol Biol Evol 21:903–913

    CAS  PubMed  Google Scholar 

  • Lintz MJ, Oinuma K, Wysoczynski CL, Greenberg EP, Churchill ME (2011) Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc Natl Acad Sci USA 108:15763–15768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Bassler BL (2019) Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 17:371–382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patankar AV, Gonzalez JE (2009) Orphan LuxR regulators of quorum sensing. FEMS Microbiol Rev 33:739–756

    CAS  PubMed  Google Scholar 

  • Patel HK, Suarez-Moreno ZR, Degrassi G, Subramoni S, Gonzalez JF, Venturi V (2013) Bacterial LuxR solos have evolved to respond to different molecules including signals from plants. Front Plant Sci 4:447

    PubMed  PubMed Central  Google Scholar 

  • Rajput A, Kumar M (2017) In silico analyses of conservational, functional and phylogenetic distribution of the LuxI and LuxR homologs in Gram-positive bacteria. Sci Rep 7:6969

    PubMed  PubMed Central  Google Scholar 

  • Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer AL et al (2016) A LuxR homolog in a cottonwood tree endophyte that activates gene expression in response to a plant signal or specific peptides. Mbio 7:e01101–e01116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher MA, Miller MC, Grkovic S, Brown MH, Skurray RA, Brennan RG (2001) Structural mechanisms of QacR induction and multidrug recognition. Science 294:2158–2163

    CAS  PubMed  Google Scholar 

  • Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteria-host communication: the language of hormones. Proc Natl Acad Sci USA 100:8951–8956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramoni S, Florez Salcedo DV, Suarez-Moreno ZR (2015) A bioinformatic survey of distribution, conservation, and probable functions of LuxR solo regulators in bacteria. Front Cell Infect Microbiol 5:16

    PubMed  PubMed Central  Google Scholar 

  • Subramoni S et al (2011) Bacterial subfamily of LuxR regulators that respond to plant compounds. Appl Environ Microbiol 77:4579–4588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramoni S, Venturi V (2009) LuxR-family 'solos': bachelor sensors/regulators of signalling molecules. Microbiology 155:1377–1385

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venturi V, Ahmer BM (2015) Editorial: LuxR solos are becoming major players in cell-cell communication in bacteria. Front Cell Infect Microbiol 5:89

    PubMed  PubMed Central  Google Scholar 

  • Wang FF, Cheng ST, Wu Y, Ren BZ, Qian W (2017) A bacterial receptor PcrK senses the plant hormone cytokinin to promote adaptation to oxidative stress. Cell Rep 21:2940–2951

    CAS  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    CAS  PubMed  Google Scholar 

  • Welsh MA, Blackwell HE (2016) Chemical probes of quorum sensing: from compound development to biological discovery. FEMS Microbiol Rev 40:774–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551:313–320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Yang S, Meng L, Wang BG (2018) The plant hormone abscisic acid regulates the growth and metabolism of endophytic fungus Aspergillus nidulans. Sci Rep 8:6504

    PubMed  PubMed Central  Google Scholar 

  • Xu HY, Zhao YC, Qian GL, Liu FQ (2015) XocR, a LuxR solo required for virulence in Xanthomonas oryzae pv. oryzicola. Front Cell Infect Microbiol 5:37

    PubMed  PubMed Central  Google Scholar 

  • Yao Y, Martinez-Yamout MA, Dickerson TJ, Brogan AP, Wright PE, Dyson HJ (2006) Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. J Mol Biol 355:262–273

    CAS  PubMed  Google Scholar 

  • You L, Cox RS 3rd, Weiss R, Arnold FH (2004) Programmed population control by cell-cell communication and regulated killing. Nature 428:868–871

    CAS  PubMed  Google Scholar 

  • Yu Z, Reichheld SE, Savchenko A, Parkinson J, Davidson AR (2010) A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators. J Mol Biol 400:847–864

    CAS  PubMed  Google Scholar 

  • Zhang L, Jia Y, Wang L, Fang R (2007) A proline iminopeptidase gene upregulated in planta by a LuxR homologue is essential for pathogenicity of Xanthomonas campestris pv. campestris. Mol Microbiol 65:121–136

    CAS  PubMed  Google Scholar 

  • Zhang RG et al (2002) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971–974

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 31570038).

Supporting information

Supplementary Table 1—Summary of characterized LuxR solo homologs in bacteria.

Supplementary Table 2—List of LuxR_Vha homologs in the TetR family.

Supplementary Fig. 1—Structure-based multiple sequence alignment (MSA) analysis of the LuxR_Vfi homologs.

Supplementary Fig. 2—Structure prediction and comparison of the LuxR_Vfi homologs.

Supplementary Fig. 3—The evolutionary conservation in LuxR_Vfi homologs estimated and visualized by the ConSurf server (Ashkenazy et al. 2016).

Supplementary Fig. 4—Structure-based MSA analysis of the LuxR_Vha homologs.

Supplementary Fig. 5—Structure prediction of the LuxR_Vha and comparison with the MDR regulators.

Supplementary Fig. 6—The evolutionary conservation in LuxR_Vha and MDR regulators estimated and visualized by the ConSurf server (Ashkenazy et al. 2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangming Xu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1865.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G. Evolution of LuxR solos in bacterial communication: receptors and signals. Biotechnol Lett 42, 181–186 (2020). https://doi.org/10.1007/s10529-019-02763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-019-02763-6

Keywords

Navigation