Skip to main content

Advertisement

Log in

Identification of internal control genes for circular RNAs

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

At present, no studies have established internal control genes for circular RNA (circRNA) analyses. We aimed to identify reference circRNAs for real-time quantitative PCR (RT-qPCR).

Results

After analyzing the RNA-seq data, we obtained 50 circRNAs that were expressed in all samples. We ranked these 50 circRNAs according to their stability and obtained the six most stable circRNAs. We further evaluated the stability of the six circRNAs and three linear control genes (i.e., GAPDH, β-actin and 18S rRNA) in 22 cell lines. Our results indicated that hsa_circ_0000284 (circHIPK3) and hsa_circ_0000471 (circN4BP2L2) were the two most stable genes. After removing linear RNAs or including the cells treated with Adriamycin, NH4Cl and shikonin, the two most stable genes were hsa_circ_0000471 and hsa_circ_0000284. The amplification efficiency was 100% for hsa_circ_0000471 and 95% for hsa_circ_0000284.

Conclusions

In conclusion, since the stability of circRNAs is higher than that of linear RNAs, hsa_circ_0000284 and hsa_circ_0000471 may be used as reference genes not only for circRNAs but also for other kinds of RNAs. The findings in the present study fill the gap of lacking reference genes in the detection of circRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66

    Article  CAS  PubMed  Google Scholar 

  • Chen L-L (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205

    Article  CAS  PubMed  Google Scholar 

  • Chuang TJ, Chen YJ, Chen CY, Mai TL, Wang YD, Yeh CS, Yang MY, Hsiao YT, Chang TH, Kuo TC, Cho HH, Shen CN, Kuo HC, Lu MY, Chen YH, Hsieh SC, Chiang TW (2018) Integrative transcriptome sequencing reveals extensive alternative trans-splicing and cis-backsplicing in human cells. Nucleic Acids Res 46:3671–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44:2846–2858

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20:1666–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  CAS  PubMed  Google Scholar 

  • Hansen TB, Veno MT, Damgaard CK, Kjems J (2016) Comparison of circular RNA prediction tools. Nucleic Acids Res 44:e58

    Article  PubMed  Google Scholar 

  • Hoffmann S, Otto C, Doose G, Tanzer A, Langenberger D, Christ S, Kunz M, Holdt LM, Teupser D, Hackermuller J, Stadler PF (2014) A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol 15:R34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Q, Yuan J, Gao L, Zhao S, Jiang W, Huang Y, Bie Z (2014) Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS ONE 9:e90612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasda E, Parker R (2016) Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circrna clearance. PLoS ONE 11:e0148407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I (2017) Circ-ZNF609 Is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66:22–37.e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Chen H, Chen S, Mo X, Li T, Xiao B, Yu R, Guo J (2017) Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J Cancer 116:626–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yang L, Chen L-L (2018) The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71:428–442

    Article  CAS  PubMed  Google Scholar 

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  PubMed  Google Scholar 

  • Ning L, Long B, Zhang W, Yu M, Wang S, Cao D, Yang J, Shen K, Huang Y, Lang J (2018) Circular RNA profiling reveals circEXOC6B and circN4BP2L2 as novel prognostic biomarkers in epithelial ovarian cancer. Int J Oncol 53:2637–2646

    CAS  PubMed  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  • Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K, Li H (2015) Circular RNA: a new star of noncoding RNAs. Cancer Lett 365:141–148

    Article  CAS  PubMed  Google Scholar 

  • Rong D, Tang W, Li Z, Zhou J, Shi J, Wang H, Cao H (2017) Novel insights into circular RNAs in clinical application of carcinomas. OncoTargets Ther 10:2183–2188

    Article  CAS  Google Scholar 

  • Tu C, Du T, Shao C, Liu Z, Li L, Shen Y (2018) Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI. Forensic Sci Med Pathol 14:194–201

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan L, Zhang L, Fan K, Cheng ZX, Sun QC, Wang JJ (2016) Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/beta-catenin pathway. Biomed Res Int 2016:1579490

    PubMed  PubMed Central  Google Scholar 

  • Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, MacLeod JN, Chiang DY, Prins JF, Liu J (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38:e178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9:1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao-Long M, Kun-Peng Z, Chun-Lin Z (2018) Circular RNA circ_HIPK3 is down-regulated and suppresses cell proliferation, migration and invasion in osteosarcoma. J Cancer 9:1856–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z (2017) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 27:626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806

    Article  CAS  PubMed  Google Scholar 

  • Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L (2014) Complementary sequence-mediated exon circularization. Cell 159:134–147

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, Liang L, Gu J, He X, Huang S (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Liu X, Xue Y, Gong W, Ma J, Xi Z, Que Z, Liu Y (2017) TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1beta/Derlin-1 pathway. J Hematol Oncol 10:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong S, Wang J, Hou J, Zhang Q, Xu H, Hu J, Zhao J, Feng J (2018a) Circular RNA hsa_circ_0000993 inhibits metastasis of gastric cancer cells. Epigenomics 10:1301–1313

    Article  CAS  PubMed  Google Scholar 

  • Zhong S, Wang J, Zhang Q, Xu H, Feng J (2018b) CircPrimer: a software for annotating circRNAs and determining the specificity of circRNA primers. BMC Bioinform 19:292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant Number 81602551 and 81702895) and the Young Talents Program of Jiangsu Cancer Hospital (Grant Number 2017YQL-10).

Supporting information

Supplementary Fig. S1—Specificity of the primers. (a) Specificity of the primers for GAPDH and β-actin was checked using circPrimer. (b) The melting curve analysis of hsa_circ_0000471 and hsa_circ_0000284. (c) The amplification specificity of the candidate internal control genes was determined using electrophoresis on an agarose gel. M, marker; 1, hsa_circ_0000471; 2, hsa_circ_0000284; 3, hsa_circ_0002484; 4, hsa_circ_0001445; 5, hsa_circ_0000944; 6, hsa_circ_0000567; 7, GAPDH; 8, 18S rRNA; 9, β-actin.

Supplementary Table S1—The 50 circRNAs expressed in all the specimens.

Supplementary Table S2—Cycle threshold values of the candidate genes in the cell lines with or without treatment of Rnase R.

Supplementary Table S3—The stability of candidate genes was assessed using 22 cell lines and cell lines treasted with different drugs*.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jifeng Feng.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, S., Zhou, S., Yang, S. et al. Identification of internal control genes for circular RNAs. Biotechnol Lett 41, 1111–1119 (2019). https://doi.org/10.1007/s10529-019-02723-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-019-02723-0

Keywords

Navigation