Skip to main content
Log in

Ultra-low carbon dioxide partial pressure improves the galactosylation of a monoclonal antibody produced in Chinese hamster ovary cells in a bioreactor

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To explore the influence of ultra-low carbon dioxide partial pressure (pCO2) on the monoclonal antibody (mAb) N-glycosylation profile in Chinese hamster ovary (CHO) cell culture.

Results

In fed-batch bioreactor cultures, lowering the pCO2 in the medium (< 25 mmHg) via increasing headspace aeration decreased the cell viability and mAb production in CHO cells. Additionally, mAb galactosylation under low pCO2 was approximately 27.45 ± 2.13%, noticeably higher than that observed under normal pCO2 (21.36 ± 1.66%) at harvest. However, all of the relevant intracellular nucleotide sugar concentrations were dramatically decreased to approximately 50% of the levels found under normal pCO2 on day 7. Real-time PCR revealed that the upregulation of galactosylation-related glycosyltransferase genes and substrate transporter genes played a critical role in the improved galactosylation under the ultra-low pCO2 condition.

Conclusions

In the bioreactor culture processes, ultra-low pCO2 demonstrated a positive effect on mAb galactosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen DC, Bridges T, Gawlitzek M, Hoy C (2000) Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnol Bioeng 70:25–31

    Article  PubMed  CAS  Google Scholar 

  • Batra J, Rathore AS (2016) Glycosylation of monoclonal antibody products: current status and future prospects. Biotechnol Prog 32:1091–1102

    Article  PubMed  CAS  Google Scholar 

  • Brunner M, Fricke J, Kroll P, Herwig C (2017) Investigation of the interactions of critical scale-up parameters (pH, pO2 and pCO2) on CHO batch performance and critical quality attributes. Bioprocess Biosyst Eng 40:251–263

    Article  PubMed  CAS  Google Scholar 

  • Chee Furng Wong D, Tin Kam Wong K, Tang Goh L, Kiat Heng C, Gek Sim Yap M (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89:164–177

    Article  PubMed  CAS  Google Scholar 

  • Dietmair S, Timmins NE, Gray PP, Nielsen LK, Kromer JO (2010) Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem 404:155–164

    Article  PubMed  CAS  Google Scholar 

  • Fan Y et al (2015) Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Biotechnol Bioeng 112:521–535

    Article  PubMed  CAS  Google Scholar 

  • Feng H-T, Wong N, Wee S, Lee M (2008) Simultaneous determination of 19 intracellular nucleotides and nucleotide sugars in Chinese Hamster ovary cells by capillary electrophoresis. J Chromatogr B 870:131–134

    Article  CAS  Google Scholar 

  • Kimura R, Miller WM (1997) Glycosylation of CHO-derived recombinant tPA produced under elevated pCO2. Biotechnol Prog 13:311–317

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Nowak C, Shao M, Ponniah G, Neill A (2016) Impact of cell culture on recombinant monoclonal antibody product heterogeneity. Biotechnol Prog 32:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Mostafa SS, Gu X (2003) Strategies for improved dCO2 removal in large-scale fed-batch cultures. Biotechnol Prog 19:45–51

    Article  PubMed  CAS  Google Scholar 

  • Saldova R et al (2014) Association of N-glycosylation with breast carcinoma and systemic features using high-resolution quantitative UPLC. J Proteome Res 13:2314–2327

    Article  PubMed  CAS  Google Scholar 

  • Schmelzer AE, Miller WM (2002) Hyperosmotic stress and elevated pCO2 alter monoclonal antibody charge distribution and monosaccharide content. Biotechnol Prog 18:346–353

    Article  PubMed  CAS  Google Scholar 

  • Yoon SK, Ahn Y-H, Han K (2001) Enhancement of recombinant erythropoietin production in CHO cells in an incubator without CO2 addition. Cytotechnology 37:119–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zanghi JA, Schmelzer AE, Mendoza TP, Knop RH, Miller WM (1999) Bicarbonate concentration and osmolality are key determinants in the inhibition of CHO cell polysialylation under elevated pCO2 or pH. Biotechnol Bioeng 65(2):182–191

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21406066, 21106045), the National High Technology Research and Development Program of China (863 Program) (No. 2012AA02A303), the Fundamental Research Funds for the Central Universities (No. 22221818014), and the Development Funds of Shanghai Zhangjiang National Independent Innovation Demonstration Zone (No. ZJ2015-ZD-002).

Supporting information

Supplementary Table 1—Primers used in real-time PCR to quantify the expression levels of specific N-galactosylation-related genes.

Supplementary Fig. 1—The glycosylation profiles of 2-AB-labeled N-glycans separated using UPLC under normal pCO2 (0.05 vvm, red) and low pCO2 (0.4 vvm, black) on day 11. Symbols: square, N-acetylglucosamine; circle, mannose; rhombus, galactose; triangle, fucose; star, sialic acid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10529_2018_2586_MOESM1_ESM.tif

The glycosylation profiles of 2-AB-labeled N-glycans separated using UPLC under normal pCO2 (0.05 vvm, red) and low pCO2 (0.4 vvm, black) on day 11. Symbols: square, N-acetylglucosamine; circle, mannose; rhombus, galactose; triangle, fucose; star, sialic acid. Supplementary material 1 (TIFF 43375 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wang, J., Chen, M. et al. Ultra-low carbon dioxide partial pressure improves the galactosylation of a monoclonal antibody produced in Chinese hamster ovary cells in a bioreactor. Biotechnol Lett 40, 1201–1208 (2018). https://doi.org/10.1007/s10529-018-2586-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2586-4

Keywords

Navigation