Skip to main content
Log in

Engineering of a hybrid route to enhance shikimic acid production in Corynebacterium glutamicum

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To exploit the archaeal shikimic acid (SA) synthesis pathway toenhance SA production in Corynebacterium glutamicum.

Results

Genetic cassettes were constructed that encoded a hybrid route for SA synthesis, which were composed of the archaeal 6-deoxy-5-ketofructose 1-phosphate pathway and the bacterial SA pathway. Corynebacterium glutamicum strains that expressed the hybrid route increased SA production by 57 %. A recombinant strain of C. glutamicum that simultaneously overexpressed the hybrid route and its native SA pathway produced 4.7 gSA/l, while C. glutamicum with only the native SA pathway produced 3.7 gSA/l.

Conclusions

A new hybrid route for SA production was successfully constructed, that effectively increased SA production in C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem 54:3328–3350

    Article  CAS  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    Article  CAS  PubMed  Google Scholar 

  • Chandran SS, Yi J, Draths KM, von Daeniken R, Webe W, Frost JW (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19:808–814

    Article  CAS  PubMed  Google Scholar 

  • Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Bäumer S, Jacobi C, Brüggemann H, Lienard T, Christmann A, Bömeke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk HP, Gunsalus RP, Fritz HJ, Gottschalk G (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461

    CAS  PubMed  Google Scholar 

  • Draths KM, Knop DR, Frost JW (1999) Shikimic acid and quinic acid: replacing isolation from plant sources with recombinant microbial biocatalysis. J Am Chem Soc 121:1603–1604

    Article  CAS  Google Scholar 

  • Escalante A, Calderon R, Valdivia A, de Anda R, Hernandez G, Ramirez OT, Gosset G, Bolivar F (2010) Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 9:21

    Article  PubMed Central  PubMed  Google Scholar 

  • Gosset G (2009) Production of aromatic compounds in bacteria. Curr Opin Biotechol 20:651–658

    Article  CAS  Google Scholar 

  • Grant AW, Steel G, Waugh H, Ellis EM (2003) A novel aldo keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity. FEMS Microbiol Lett 218:93–99

    Article  CAS  PubMed  Google Scholar 

  • Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hovey H, Lentes S, Ehrenreich A, Salmon K, Saba K, Gottschalk G, Gunsalus RP, Deppenmeier U (2005) DNA microarray analysis of Methanosarcina mazei Go1 reveals adaptation to different methanogenic substrates. Mol Gen Genomics 273:225–239

    Article  CAS  Google Scholar 

  • Iomantas YAV, Abalakina EG, Polanue BM, Yampolskaya TA, Bachina TA, Kozlov YI (2002) Method for producing shikimic acid. US Patent: US 6,436,664 B1

  • Koma D, Yamanaka H, Moriyoshi K, Ohmoto T, Sakai K (2012) Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl Environ Microbiol 78:6203–6216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5:277–283

    Article  PubMed  Google Scholar 

  • Makoto S, Reiko M, Satoshi S, Kosuke S, Saburo Y, Katsuhiro S, Tetsu Y, Kenichi O (2001) Microorganism belonging to the genus citrobacter and process for producing shikimic acid. European Patent: EP 1 092 766 A1

  • Meza E, Becker J, Bolivar F, Gosset G, Wittmann C (2012) Consequences of phosphoenolpyruvate: sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli. Microb Cell Fact 11:127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morar M, White RH, Ealick SE (2007) Structure of 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid synthase, a catalyst in the archaeal pathway for the biosynthesis of aromatic amino acids. Biochemistry 46:10562–10571

    Article  CAS  PubMed  Google Scholar 

  • Niimi S, Suzuki N, Inui M, Yukawa H (2011) Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:1721–1729

    Article  CAS  PubMed  Google Scholar 

  • Parche S, Burkovski A, Sprenger GA, Weil B, Krämer R, Titgemeyer F (2001) Corynebacteriuim glutamicum: a dissection of the PTS. J Mol Microbiol Biotechnol 3:423–428

    CAS  PubMed  Google Scholar 

  • Porat I, Sieprawska-Lupa M, Teng Q, Bohanon FJ, White RH, Whitman WB (2006) Biochemical and genetic characterization of an early step in a novel pathway for the biosynthesis of aromatic amino acids and p-aminobenzoic acid in the archaeon Methanococcus maripaludis. Mol Microbiol 62:1117–1131

    Article  CAS  PubMed  Google Scholar 

  • Rawat G, Tripathi P, Saxena RK (2013) Expanding horizons of shikimic acid. Recent progresses in production and its endless frontiers in application and market trends. Appl Microbiol Biotechnol 97:4277–4287

    Article  CAS  PubMed  Google Scholar 

  • White RH (2004) L-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate Are the Precursors to the Aromatic Amino Acids in Methanocaldococcus jannaschii. Biochemistry 43:7618–7627

    Article  CAS  PubMed  Google Scholar 

  • White RH, Xu H (2006) Methylglyoxal is an intermediate in the biosynthesis of 6-deoxy-5-ketofructose-1-phosphate: a precursor for aromatic amino acid biosynthesis in Methanocaldococcus jannaschii. Biochemistry 45:12366–12379

    Article  CAS  PubMed  Google Scholar 

  • Xu YF, Amador-Noguez D, Reaves ML, Feng XJ, Rabinowitz JD (2012) Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase. Nat Chem Biol 8:562–568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang B, Zhou N, Liu YM, Liu C, Lou CB, Jiang CY, Liu SJ (2015) Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum. Microbial Cell Factory (MICF-D-15-00077, in press)

Download references

Acknowledgments

This work was supported by 973 Project from Ministry of Science and Technology (No. 2012CB7211-04).

Supporting information

Supplementary Table 1 Bacterial strains, plasmids, and oligonucleotides used in this study.

Supplementary Fig. 1 Expression of archaeal genes in C. glutamicum RES167ΔaroK/pDKFP-1, RES167ΔaroK/pDKFP-2 and RES167ΔaroK/pDKFP-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-Jiang Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Jiang, CY., Liu, YM. et al. Engineering of a hybrid route to enhance shikimic acid production in Corynebacterium glutamicum . Biotechnol Lett 37, 1861–1868 (2015). https://doi.org/10.1007/s10529-015-1852-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1852-y

Keywords

Navigation