Skip to main content

Advertisement

Log in

Selection and validation of reliable reference genes in Gossypium raimondii

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To identify reliable reference genes for gene expression analysis in Gossypium raimondii.

Results

Five different software tools, geNorm, NormFinder, BestKeeper, ReFinder and ∆Ct method were employed to analyze the qRT-PCR data systematically of 12 housekeeping genes. SAD and TUA11 showed relatively stable expression levels in all tissues (i.e. leaves, shoots, buds, and sepals). We then limited our analysis to each plant part and identified tissue-specific reference genes. Our results showed TUA11, TUB6 and EF1a, EF1a, MZA and GAPC2, MZA, GAPC2, SAD and TUA11, and UBQ and MZA were reliable reference genes in leaves, shoots, buds, and sepals, respectively.

Conclusion

Some genes were commonly identified as candidate reference genes in more than two tissue, while others were tissue-specific. Thus, our study allows choosing an appropriate control gene based on sampling for gene expression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EF-1a:

Elongation factor-1A

UBQ:

Polyubiquitin

ACT:

Actin

TUA:

α-Tubulin

TUB:

β-Tubulin

GAPC2:

Glyceraldehyde-3-phosphate dehydrogenase C-2

PTB:

Polypyrimidine tract-binding protein homolog

PP2A:

Catalytic subunit of protein phosphatase 2A (PP2A)

SAD:

Stearoyl-ACP desaturase

GM (CP):

The geometric mean of CP

AR (CP):

The arithmetic mean of CP

Min (CP) and Max (CP):

The extreme values of CP

SD (±CP):

The standard deviation of the CP

CV (% CP):

The coefficient of variance expressed as a percentage on the CP level

r:

Pearson correlation coefficient

SD:

Standard deviation

References

  • Andersen CL, Jensen JL et al (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Artico S, Nardeli SM et al (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49

    Article  PubMed Central  PubMed  Google Scholar 

  • Brunner AM, Yakovlev IA et al (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Bustin SA (2005) Real-time, fluorescence-based quantitative PCR: a snapshot of current procedures and preferences. Expert Rev Mol Diagn 5:493–498

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V et al (2005) Quantitative real-time RT-PCR–a perspective. J Mol Endocrin 34:597–601

    Article  CAS  Google Scholar 

  • Cassan-Wang H, Soler M et al (2012) Reference genes for high-throughput quantitative reverse transcription-PCR analysis of gene expression in organs and tissues of Eucalyptus grown in various environmental conditions. Plant Cell Physiol 53:2101–2116

    Article  CAS  PubMed  Google Scholar 

  • Chaouachi M, Alaya A et al (2013) Development of real-time PCR method for the detection and the quantification of a new endogenous reference gene in sugar beet “Beta vulgaris L.”: GMO application. Plant Cell Rep 32:117–128

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhong HY et al (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234:377–390

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M et al (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Jonge HJ, Fehrmann RS et al (2007) Evidence based selection of housekeeping genes. PLoS One 2:e898

    Article  PubMed Central  PubMed  Google Scholar 

  • Ding J, Jia J et al (2004) Validation of a rice specific gene, sucrose phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. J Agri Food Chem 52:3372–3377

    Article  CAS  Google Scholar 

  • Exposito-Rodriguez M, Borges AA et al (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131

    Article  PubMed Central  PubMed  Google Scholar 

  • Faccioli P, Ciceri GP et al (2007) A combined strategy of “in silico” transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies. Plant Mol Biol 63:679–688

    Article  CAS  PubMed  Google Scholar 

  • Goetz M, Vivian-Smith A et al (2006) AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell 18:1873–1886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goidin D, Mamessier A et al (2001) Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and beta-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive human melanoma cell subpopulations. Anal Biochem 295:17–21

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez L, Mauriat M et al (2008a) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotech J 6:609–618

    Article  CAS  Google Scholar 

  • Gutierrez L, Mauriat M et al (2008b) Towards a systematic validation of references in real-time RT-PCR. Plant Cell 20:1734–1735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hruz T, Wyss M et al (2011) RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genom 12:156

    Article  CAS  Google Scholar 

  • Jain M, Nijhawan A et al (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophy Res Commun 345:646–651

    Article  CAS  Google Scholar 

  • Jian B, Liu B et al (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9:59

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim BR, Nam HY et al (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotech Lett 25:1869–1872

    Article  CAS  Google Scholar 

  • Liang M, Haroldsen V et al (2006) Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant, Cell Environ 29:746–753

    Article  CAS  Google Scholar 

  • Ma J, Guo TL et al (2015) Expression profiles of miRNAs in Gossypium raimondii. J Zhejiang University Sci B. doi:10.1631/jzus.B1400277

    Google Scholar 

  • Mahoney DJ, Carey K et al (2004) Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise. Physiol Genomics 18:226–231

    Article  CAS  PubMed  Google Scholar 

  • Nicot N, Hausman JF et al (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  CAS  PubMed  Google Scholar 

  • Paolacci AR, Tanzarella OA et al (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Paterson AH, Wendel JF et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Tichopad A et al (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotech Lett 26:509–515

    Article  CAS  Google Scholar 

  • Reid KE, Olsson N et al (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Remans T, Smeets K et al (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophy Method 46:69–81

    Article  CAS  Google Scholar 

  • Scholtz JJ, Visser B (2013) Reference gene selection for qPCR gene expression analysis of rust-infected wheat. Physiol Mol Plant P 81:22–25

    Article  CAS  Google Scholar 

  • Serra IA, Lauritano C et al (2012) Reference genes assessment for the seagrass Posidonia oceanica in different salinity, pH and light conditions. Mar Biol 159(6):1269–1282

    Article  CAS  Google Scholar 

  • Silver N, Best S et al (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Tong Z, Gao Z et al (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71

    Article  PubMed Central  PubMed  Google Scholar 

  • Vandesompele J, De Preter K et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

  • Wang M, Wang Q et al (2013) Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton (Gossypium hirsutum L.). Gene 530:44–50

    Article  CAS  PubMed  Google Scholar 

  • Xie FL, Jones DC et al (2015) Small RNA sequencing identifies miRNA roles in ovule and fiber development. Plant Biotechnol J. doi: 10.1111/pbi.12296 (in press)

  • Xie F, Xiao P et al (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84

    Article  CAS  Google Scholar 

  • Zhang B, Pan X (2009) Expression of microRNAs in cotton. Mol Biotech 42:269–274

    Article  CAS  Google Scholar 

  • Zhang Y, Chen D et al (2012) Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity. PLoS One 7:e31849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu X, Li X et al (2012) Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS One 7:e44405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu JF, Zhang LF et al (2013) Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. PLoS One 8:e53196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project is partially supported by National Natural Science Foundation of China (Grant Number: 31170263). We appreciate Faten Taki for her proofread of this manuscript.

Supplementary Table 1

Properties of twelve reference gene candidates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglian Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., He, Q., Zhang, B. et al. Selection and validation of reliable reference genes in Gossypium raimondii . Biotechnol Lett 37, 1483–1493 (2015). https://doi.org/10.1007/s10529-015-1810-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1810-8

Keywords

Navigation