Skip to main content
Log in

Identification of novel knockout and up-regulated targets for improving isoprenoid production in E. coli

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Discovery of novel potential genetic targets to increase the supply of isoprenoid precursors, isopentyl/dimethylallyl diphosphate, is of importance for microbial production of isoprenoids. Here, to improve isoprenoid precursor supply, a flux distribution comparison analysis, based on the genome-scale model, was utilized to simultaneously predict the knockout, down- and up-regulated targets in Escherichia coli. 51 targets were in silico discovered. All knockout and up-regulated targets were experimentally tested to enhance lycopene production. Five knockout targets (deoB, yhfw, yahI, pta and eutD) and four up-regulated targets (ompN, ompE, ndk and cmk) led to 10–45 % increases of lycopene yield, respectively, which had not been uncovered in previous studies. When engineering of the five most significant targets gdhA, eutD, tpiA, ompE and ompN, were combined the lycopene titer improved by 174 % in shake-flask and 81 % in bioreactor fermentations with a maximum yield of 454 mg l−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ajikumar PK, Xiao W-H, Tyo KEJ et al (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alper H, Jin YS, Moxley JF et al (2005a) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164

    Article  PubMed  CAS  Google Scholar 

  • Alper H, Miyaoku K, Stephanopoulos G (2005b) Construction of lycopene-overproducing Escherichia coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23:612–616

    Article  PubMed  CAS  Google Scholar 

  • Asadollahi MA, Maury J, Patil KR et al (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11:328–334

    Article  PubMed  CAS  Google Scholar 

  • Becker J, Zelder O, Häfner S et al (2011) From zero to hero–design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13:159–168

    Article  PubMed  CAS  Google Scholar 

  • Boghigian BA, Armando J, Salas D et al (2012) Computational identification of gene over-expression targets for metabolic engineering of taxadiene production. Appl Microbiol Biotechnol 93:2063–2073

    Article  PubMed  CAS  Google Scholar 

  • Bologna FP, Campos-Bermudez VA, Saavedra DD et al (2010) Characterization of Escherichia coli EutD: a phosphotransacetylase of the ethanolamine operon. J Microbiol 48:629–636

    Article  PubMed  CAS  Google Scholar 

  • Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657

    Article  PubMed  CAS  Google Scholar 

  • Choi HS, Lee SY, Kim TY et al (2010) In silico identification of gene amplification targets for improvement of lycopene production. Appl Environ Microbiol 76:3097–3105

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cunningham FX, Sun Z, Chamovitz D et al (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell 6:1107–1121

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Feist AM, Henry CS, Reed JL et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fricke J, Neuhard J, Kelln RA et al (1995) The cmk gene encoding cytidine monophosphate kinase is located in the rpsA operon and is required for normal replication rate in Escherichia coli. J Bacteriol 177:517–523

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kang MJ, Lee YM, Yoon SH et al (2005) Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method. Biotechnol Bioeng 91:636–642

    Article  PubMed  CAS  Google Scholar 

  • Lee JW, Na D, Park JM et al (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546

    Article  PubMed  CAS  Google Scholar 

  • Melzer G, Esfandabadi ME, Franco-Lara E et al (2009) Flux design: in silico design of cell factories based on correlation of pathway fluxes to desired properties. BMC Syst Biol 3:120

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Meng H, Lu Z, Wang Y et al (2011) In silico improvement of heterologous biosynthesis of erythromycin precursor 6-deoxyerythronolide B in Escherichia coli. Biotechnol Bioproc Eng 16:445–456

    Article  CAS  Google Scholar 

  • Miller JH, Funchain P, Clendenin W, Huang T et al (2002) Escherichia coli strains (ndk) lacking nucleoside diphosphate kinase are powerful mutators for base substitutions and frameshifts in mismatch-repair-deficient strains. Genet 162:5–13

    CAS  Google Scholar 

  • Nielsen J (1998) Metabolic engineering: techniques for analysis of targets for genetic manipulations. Biotechnol Bioeng 58:125–132

    Article  PubMed  CAS  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  PubMed  CAS  Google Scholar 

  • Prilipov A, Phale PS, Koebnik R et al (1998) Identification and characterization of two quiescent porin genes, nmpC and ompN, in Escherichia coli BE. J Bacteriol 180:3388–3392

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ranganathan S, Suthers PF, Maranas CD (2010) OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol 6:e1000744

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotech 22:1261–1267

    Article  CAS  Google Scholar 

  • Tsuruta H, Paddon CJ, Eng D, Lenihan JR et al (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 4:e4489

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang JF, Xiong ZQ, Li SY et al (2013) Enhancing isoprenoid production through systematically assembling and modulating efflux pumps in Escherichia coli. Appl Microbiol Biotechnol 97:8057–8067

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Liu L, Zhang Z et al (2013) Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Appl Microbiol Biotechnol 97:519–539

    Article  PubMed  CAS  Google Scholar 

  • Yadav VG, De Mey M, Lim CG et al (2012) The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 14:233–241

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yuan LZ, Rouvière PE, Larossa RA et al (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in Escherichia coli. Metab Eng 8:79–90

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Li Q, Sun T et al (2013) Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab Eng 17:42–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

National Basic Research Program of China (973 Program) (No. 2012CB721104), the National High Technology Research and Development Program (“863” Program: 2012AA02A701) National Natural Science Foundation of China (Nos. 31170101, 31100073 and 31301017), Major Projects of Knowledge Innovation Program of Chinese Academy of Sciences (No. KSCX2-EW-J-12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si-liang Zhang or Yong Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Jf., Meng, Hl., Xiong, Zq. et al. Identification of novel knockout and up-regulated targets for improving isoprenoid production in E. coli . Biotechnol Lett 36, 1021–1027 (2014). https://doi.org/10.1007/s10529-014-1460-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1460-2

Keywords

Navigation