Skip to main content
Log in

Differential sensitivities of the growth of Escherichia coli to acrylate under aerobic and anaerobic conditions and its effect on product formation

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The effect of acrylate on the growth of Escherichia coli was determined under aerobic and anaerobic conditions in glucose-defined medium. Growth occurred with up to 35 mM acrylate under aerobic conditions but ceased at 5 mM acrylate under anaerobic conditions. This differential sensitivity can be attributed to inhibition of pyruvate formate lyase and/or pflB gene repression, as this enzyme is necessary for anaerobic growth of E. coli. The effect of acrylate on end-product distribution was also determined by growing E. coli first aerobically, then switching to anaerobic conditions. In the absence of acrylate, E. coli generated the typical distribution of mixed-acid products, with about 12 % of pyruvate being metabolically converted to lactate. In contrast, in the presence of 5 mM acrylate, E. coli converted 83 % of pyruvate to lactate, consistent with a reduction in pyruvate formate lyase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akedo M, Cooney CL, Sinskey AJ (1983) Direct demonstration of lactate-acrylate interconversion in Clostridium propionicum. Nat Biotechnol 1:791–794

    Article  CAS  Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of bio based products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  • Burk MJ, Burgard AP, Pharkya P (2012) Microorganisms and methods for the biosynthesis of fumarate, malate, and acrylate U.S. Patent 8,129,154

  • Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223–234

    Article  CAS  Google Scholar 

  • Eiteman MA, Chastain MJ (1997) Optimization of the ion-exchange analysis of organic acids from fermentation. Anal Chim Acta 338:69–75

    Article  CAS  Google Scholar 

  • Kandasamy V, Vaidyanathan H, Djurdjevic I, Jayamani E, Ramachandran KB, Buckel W, Jayaraman G, Ramalingam S (2013) Engineering Escherichia coli with acrylate pathway genes for propionic acid synthesis and its impact on mixed-acid fermentation. Appl Microbiol Biotechnol 97:1191–1200

    Article  PubMed  CAS  Google Scholar 

  • Lilga MA, White JR, Holladay JE, Zacher AH, Muzatko DS, Orth RJ (2010) Method for the conversion of β-hydroxy carbonyl compounds. U.S. Patent 7,687,661

  • Millet JMM (1998) FePO catalysts for the selective oxidative dehydrogenation of isobutyrate into methacrylic acid. Cat Rev Sci Eng 40:1–38

    Article  CAS  Google Scholar 

  • Ning L, Ding Y, Chen W, Gong L, Lin R, Yuan L, Xin Q (2008) Glycerol dehydration to acrolein over activated carbon-supported silicotungstic acids. Chinese J Catal 29:212–214

    Article  CAS  Google Scholar 

  • Plaga W, Vielhaber G, Wallach J, Knappe J (2000) Modification of Cys-418 of pyruvate formate-lyase by methacrylic acid, based on its radical mechanism. FEBS Lett 466:45–48

    Article  PubMed  CAS  Google Scholar 

  • Qu M, Bhattacharya SK (1996) Degradation and toxic effects of acrylic acid on anaerobic systems. J Environ Eng 122:749–756

    Article  CAS  Google Scholar 

  • Straathof AJJ, Sie S, Franco TT, van der Wielen LAM (2005) Feasibility of acrylic acid production by fermentation. Appl Microbiol Biotechnol 67:727–734

    Article  PubMed  CAS  Google Scholar 

  • Todd JD, Curson ARJ, Sullivan MJ, Kirkwood M, Johnston AWB (2012) The Ruegeria pomeroyi AcuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. PLoS One 7(4):e35947

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Iida T, Aizawa Y, Aida TM, Inomata H (2007) Acrolein synthesis from glycerol in hot-compressed water. Bioresour Technol 98:1285–1290

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Lin J, Cen P (2006) Advances in the research and development of acrylic acid production from biomass. Chin J Chem Eng 14:419–427

    Article  CAS  Google Scholar 

  • Zhong L, Whitehouse RS (2005) Methods of making intermediates from polyhydroxyalkanoates. U. S. Patent 6,897,338

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Eiteman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arya, A.S., Lee, S.A. & Eiteman, M.A. Differential sensitivities of the growth of Escherichia coli to acrylate under aerobic and anaerobic conditions and its effect on product formation. Biotechnol Lett 35, 1839–1843 (2013). https://doi.org/10.1007/s10529-013-1282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1282-7

Keywords

Navigation