Skip to main content
Log in

Heterogeneity in the mycelium: implications for the use of fungi as cell factories

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Fungi are widely used as cell factories for the production of pharmaceutical compounds, enzymes and metabolites. Fungi form colonies that consist of a network of hyphae. During the last two decades it has become clear that fungal colonies within a liquid culture are heterogeneous in size and gene expression. Heterogeneity in growth, secretion, and RNA composition can even be found between and within zones of colonies. These findings imply that productivity in a bioreactor may be increased by reducing the heterogeneity within the culture. The results also imply that molecular mechanisms underlying productivity of fungi in bioreactors should not be studied at the culture level but at the level of micro-colony populations or even at zonal or hyphal level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams TH, Boylan MT, Timberlake WE (1988) brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54:353–362

    Article  PubMed  CAS  Google Scholar 

  • Bleichrodt R, van Veluw GJ, Recter B, Maruyama J, Kitamoto K, Wösten HAB (2012) Hyphal heterogeneity in Aspergillus oryzae is the result of dynamic closure of septa by Woronin bodies. Mol Microbiol 86:1334–1344

    Article  PubMed  CAS  Google Scholar 

  • Bleichrodt R, Vinck A, Krijgsheld P, van Leeuwen MR, Dijksterhuis J, Wösten HAB (2013) Cytosolic streaming in vegetative mycelium and aerial structures of Aspergillus niger. Stud Mycol 74:31–46

    Article  PubMed  CAS  Google Scholar 

  • Boffa IC, Vidali G, Mann RS, Allfrey VG (1978) Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J Biol Chem 253:3364–3366

    PubMed  CAS  Google Scholar 

  • Braaksma M, Martens-Uzunova ES, Punt PJ, Schaap PJ (2010) An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics 11:584

    Article  PubMed  Google Scholar 

  • de Bekker C (2011) Hyphal heterogeneity in Aspergillus niger. PhD Thesis, University of Utrecht, The Netherlands

  • de Bekker C, van Veluw GJ, Vinck A, Wiebenga LA, Wösten HAB (2011a) Heterogeneity of Aspergillus niger microcolonies in liquid shaken cultures. Appl Environ Microbiol 77:1263–1267

    Article  PubMed  Google Scholar 

  • de Bekker C, Bruning O, Jonker MJ, Breit TM, Wösten HAB (2011b) Single cell transcriptomics of neighboring hyphae of Aspergillus niger. Genome Biol 12:R71

    Article  PubMed  Google Scholar 

  • Dynesen J, Nielsen J (2003) Surface hydrophobicity of Aspergillus nidulans conidiospores and its role in pellet formation. Biotechnol Progress 19:1049–1052

    Article  CAS  Google Scholar 

  • Etxebeste O, Herrero-Garcia E, Araújo-Bazán L, Rodriguez-Urra AB, Garzia A, Ugalde U, Espeso EA (2009) The bZIP-type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulans. Mol Microbiol 73:775–789

    Article  PubMed  CAS  Google Scholar 

  • Ferreira de Oliveira JM, van Passel MWJ, Schaap PJ, de Graaff LH (2010) Shotgun proteomics of Aspergillus niger microsomes upon D-xylose induction. Appl Environ Microbiol 76:4421–4429

    Article  PubMed  CAS  Google Scholar 

  • Ferreira de Oliveira JM, van Passel MW, Schaap PJ, de Graaff LH (2011) Proteomic analysis of the secretory response of Aspergillus niger to d-maltose and D-xylose. PLoS ONE 6:e20865

    Article  CAS  Google Scholar 

  • Finkelstein DB, Rambosek J, Crawford MS, Soliday CL, McAda PC, Leach J (1989) Protein secretion in Aspergillus niger. In: Hershberger CL, Queener SW, Hegeman G (eds) Genetics and molecular biology of industrial microorganisms. American Society of Microbiology, Washington DC, pp 295–300

    Google Scholar 

  • Fontaine T, Beauvais A, Loussert C, Thevenard B, Fulgsang CC, Ohno N, Clavaud C, Prevost MC, Latgé JP (2010) Cell wall alpha1-3glucans induce the aggregation of germinating conidia of Aspergillus fumigatus. Fungal Genet Biol 47:707–712

    Article  PubMed  CAS  Google Scholar 

  • Fujii I, Yasuoka Y, Tsai HF, Chang YC, Kwon-Chung KJ, Ebizuka Y (2004) Hydrolytic polyketide shortening by Ayg1p, a novel enzyme involved in fungal melanin biosynthesis. J Biol Chem 279:44613–44620

    Article  PubMed  CAS  Google Scholar 

  • Grimm LH, Kelly S, Krull R, Hempel DC (2005) Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 69:375–384

    Article  PubMed  CAS  Google Scholar 

  • Jones PA (1985) Effects of 5-azacytidine and its 2′-deoxy derivative on cell differentiation and DNA methylation. Pharmacol Ther 28:17–27

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen TR, Park J, Arentshorst M, van Welzen AM, Lamers G, Vankuyk PA, Damveld RA, van den Hondel CAMJJ, Nielsen KF, Frisvad JC, Ram AFJ (2011) The molecular and genetic basis of conidial pigmentation in Aspergillus niger. Fungal Genet Biol 48:544–553

    Article  PubMed  Google Scholar 

  • Kasuga T, Glass NL (2008) Dissecting colony development of Neurospora crassa using mRNA profiling and comparative genomics approach. Eukaryot Cell 7:1549–1564

    Article  PubMed  CAS  Google Scholar 

  • Krijgsheld P (2013). Sporulation inhibited secretion in Aspergillus niger. PhD Thesis, University of Utrecht, The Netherlands

  • Krijgsheld P, Altelaar AFM, Post H, Ringrose JF, Müller WH, Heck AJR, Wosten HAB (2012) Spatially resolving the secretome within the mycelium of the cell factory Aspergillus niger. J Proteome Res 11:2807–2818

    Article  PubMed  CAS  Google Scholar 

  • Krijgsheld P, Bleichrodt R, van Veluw GJ, Wang F, Müller WH, Dijksterhuis J, Wösten HAB (2013a) Development in Aspergillus. Stud Mycol 74:1–29

    Article  PubMed  CAS  Google Scholar 

  • Krijgsheld P, Nitsche BM, Post H, Levin AM, Müller WH, Heck AJ, Ram AF, Altelaar M, Wösten HAB (2013b) Deletion of flbA results in increased secretome complexity and reduced secretion heterogeneity in colonies of Aspergillus niger. J Proteome Res. doi:10.1021/pr301154w

    PubMed  Google Scholar 

  • Lee BN, Adams TH (1994) Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol Microbiol 14:323–334

    Article  PubMed  CAS  Google Scholar 

  • Lee DW, Freitag M, Selker EU, Aramayo R (2008) A cytosine methyltransferase homologue is essential for sexual development in Aspergillus nidulans. PLoS ONE 3:e2531

    Article  PubMed  Google Scholar 

  • Lee I, Oh JH, Shwab EK, Dagenais TR, Andes D, Keller NP (2009) HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet Biol 46:782–790

    Article  PubMed  CAS  Google Scholar 

  • Levin AM, de Vries RP, Conesa A, de Bekker C, Talon M, Menke HH, van Peij NNME, Wösten HAB (2007a) Spatial differentiation in the vegetative mycelium of Aspergillus niger. Eukaryot Cell 6:2311–2322

    Article  PubMed  CAS  Google Scholar 

  • Levin AM, de Vries RP, Wösten HAB (2007b) Localization of protein secretion in fungal colonies using a novel culturing technique; the ring-plate system. J Microbiol Meth 69:399–401

    Article  CAS  Google Scholar 

  • Li A, Pfelzer N, Zuijderwijk R, Brickwedde A, van Zeijl C, Punt P (2013) Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4684-x

    Google Scholar 

  • Lin PJ, Grimm LH, Wulkow M, Hempel DC, Krull R (2008) Population balance modeling of the conidial aggregation of Aspergillus niger. Biotechnol Bioeng 99:341–350

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Sun J, Nimtz M, Wissing J, Zeng AP, Rinas U (2010) The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microb Cell Fact 9:23

    Article  PubMed  Google Scholar 

  • Masai K, Maruyama J, Sakamoto K, Nakajima H, Akita O, Kitamoto K (2006) Square-plate culture method allows detection of differential gene expression and screening of novel, region-specific genes in Aspergillus oryzae. Appl Microbiol Biotechnol 71:881–891

    Article  PubMed  CAS  Google Scholar 

  • Metz B, Kossen NWF (1977) The growth of molds in the form of pellets—a literature review. Biotechnol Bioeng 19:781–799

    Article  CAS  Google Scholar 

  • Meyer V, Wu B, Ram AFJ (2011) Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol Lett 33:469–476

    Article  PubMed  CAS  Google Scholar 

  • Montiel MD, Lee HA, Archer DB (2006) Evidence of RIP (repeat-induced point mutation) in transposase sequences of Aspergillus oryzae. Fungal Genet Biol 43:439–445

    Article  PubMed  CAS  Google Scholar 

  • Moukha SM, Wösten HAB, Asther M, Wessels JGH (1993a) In situ localization of the secretion of lignin peroxidases in colonies of Phanerochaete chrysosporium using a sandwiched mode of culture. J Gen Microbiol 139:969–978

    Article  PubMed  CAS  Google Scholar 

  • Moukha SM, Wösten HAB, Mylius E, Asther M, Wessels JGH (1993b) Spatial and temporal accumulation of mRNAs encoding two common lignin peroxidases in Phanerochaete chrysosporium. J Bacteriol 175:3672–3678

    PubMed  CAS  Google Scholar 

  • Papagianni M, Moo-Young M (2002) Protease secretion in glucoamylase producer Aspergillus niger cultures: fungal morphology and inoculum effects. Process Biochem 37:1271–1278

    Article  CAS  Google Scholar 

  • Papagianni M, Mattey M, Kristiansen B (1998) Citric acid production and morphology of Aspergillus niger as functions of the mixing intensity in a stirred tank and a tubular loop bioreactor. Biochem Eng J 2:197–205

    Article  CAS  Google Scholar 

  • Priegnitz BE, Wargenau A, Brandt U, Rohde M, Dietrich S, Kwade A, Krull R, Fleissner A (2012) The role of initial spore adhesion in pellet and biofilm formation in Aspergillus niger. Fungal Genet Biol 49:30–38

    Article  PubMed  CAS  Google Scholar 

  • Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel CAMJJ (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206

    Article  PubMed  CAS  Google Scholar 

  • Ryoo D, Choi C-S (1999) Surface thermodynamics of pellet formation in Aspergillus niger. Biotechnol Lett 21:97–100

    Article  CAS  Google Scholar 

  • Scholtmeijer K, de Vocht ML, Rink R, Robillard GT, Wösten HAB (2009) Assembly of the fungal SC3 hydrophobin into functional amyloid fibrils depends on its concentration and is promoted by cell wall polysaccharides. J Biol Chem 284:26309–26314

    Article  PubMed  CAS  Google Scholar 

  • Sealy L, Chalkley R (1978) The effect of sodium butyrate on histone modification. Cell 14:115–121

    Article  PubMed  CAS  Google Scholar 

  • Shwab EK, Jin WB, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664

    Article  PubMed  CAS  Google Scholar 

  • Teertstra WR, Lugones LG, Wösten HAB (2004) In situ hybridisation in filamentous fungi using peptide nucleic acid probes. Fungal Genet Biol 41:1099–1103

    Article  PubMed  CAS  Google Scholar 

  • Tribus M, Galehr J, Trojer P, Brosch G, Loidl P, Marx F, Haas H, Graessle S (2005) HdaA, a major class 2 histone deacetylase of Aspergillus nidulans, affects growth under conditions of oxidative stress. Eukaryot Cell 4:1736–1745

    Article  PubMed  CAS  Google Scholar 

  • Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE (2009) Analytical and computational approaches to define the Aspergillus niger secretome. Fungal Genet Biol 46:S153–S160

    Article  PubMed  CAS  Google Scholar 

  • van Veluw GJ, Teertstra WR, de Bekker C, Vinck A, van Beek N, Muller WH, Arentshorst M, van der Mei HC, Ram AFJ, Dijksterhuis J, Wösten HAB (2013) Heterogeneity in liquid shaken cultures of Aspergillus niger inoculated with melanised conidia or conidia of pigmentation mutants. Stud Mycol 74:47–57

    Article  PubMed  Google Scholar 

  • Vinck A, Terlou M, Pestman WR, Martens EP, Ram AFJ, van den Hondel CAMJJ, Wösten HAB (2005) Hyphal differentiation in the exploring mycelium of Aspergillus niger. Mol Microbiol 58:693–699

    Article  PubMed  CAS  Google Scholar 

  • Vinck A, de Bekker C, Ossin A, Ohm RA, de Vries RP, Wösten HAB (2011) Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies. Environ Microbiol 13:216–225

    Article  PubMed  CAS  Google Scholar 

  • Ward M, Lin C, Victoria DC, Fox BP, Fox JA, Wong DL, Meerman HJ, Pucci JP, Fong RB, Heng MH, Tsurushita N, Gieswein C, Park M, Wang H (2004) Characterization of humanized antibodies secreted by Aspergillus niger. Appl Environ Microbiol 70:2567–2576

    Article  PubMed  CAS  Google Scholar 

  • Wessels JGH (1988) A steady-state model for apical wall growth in fungi. Acta Bot Neerl 37:3–16

    Google Scholar 

  • Wessels JGH (1993) Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123:397–413

    Article  CAS  Google Scholar 

  • Wieser J, Lee BN, Fondon JW, Adams TH (1994) Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr Genet 27:62–69

    Article  PubMed  CAS  Google Scholar 

  • Wösten HAB, Moukha SM, Sietsma JH, Wessels JGH (1991) Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137:2017–2023

    Article  PubMed  Google Scholar 

  • Yu JH, Wieser J, Adams TH (1996) The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J 15:5184–5190

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han A. B. Wösten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wösten, H.A.B., van Veluw, G.J., de Bekker, C. et al. Heterogeneity in the mycelium: implications for the use of fungi as cell factories. Biotechnol Lett 35, 1155–1164 (2013). https://doi.org/10.1007/s10529-013-1210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1210-x

Keywords

Navigation