Skip to main content
Log in

Precipitation of Trichoderma reesei commercial cellulase preparations under standard enzymatic hydrolysis conditions for lignocelluloses

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Comparative studies between commercial Trichoderma reesei cellulase preparations show that, depending on the preparation and loading, total protein precipitation can be as high as 30 % under standard hydrolysis conditions used for lignocellulosic materials. ATR-IR and SDS-PAGE data verify precipitates are protein-based and contain key cell wall hydrolyzing enzymes. Precipitation increased considerably with incubation temperature; roughly 50–150 % increase from 40 to 50 °C and 800 % greater at 60 °C. All of the reported protein losses translated into significant, and often drastic, losses in activity on related 4-nitrophenyl substrates. In addition, supplementation with the non-ionic surfactant PEG 6,000 decreased precipitation up to 80 % in 24 h precipitation levels. Protein precipitation is potentially substantial during enzymatic hydrolysis of lignocelluloses and should be accounted for during lignocellulose conversion process design, particularly when enzyme recycling is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adney WS, Jeoh T, Beckham GT, Chou YC, Baker JO, Michener W, Brunecky R, Himmel ME (2009) Probing the role of N-linked glycans in the stability and activity of fungal cellobiohydrolases by mutational analysis. Cellulose 16(4):699–709

    Article  CAS  Google Scholar 

  • Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43(5):772–777

    Article  CAS  Google Scholar 

  • Hall M, Rubin J, Behrens SH, Bommarius AS (2011) The cellulose-binding domain of cellobiohydrolase Cel7A from Trichoderma reesei is also a thermostabilizing domain. J Biotechnol 155(4):370–376

    Article  PubMed  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  PubMed  CAS  Google Scholar 

  • Kohlmann KL, Westgate P, Velayudhan A, Weil J, Sarikaya A, Brewer MA, Hendrickson RL, Ladisch MR (1995) Enzyme conversion of lignocellulosic plant materials for resource recovery in a controlled ecological life support system. Adv Space Res 18:251–265

    Article  Google Scholar 

  • Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39(8):549–559

    Article  PubMed  CAS  Google Scholar 

  • Kristensen JB, Borjesson J, Bruun MH, Tjerneld F, Jørgensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzym Microb Technol 40:888–895

    Article  CAS  Google Scholar 

  • Mahler HC, Huber F, Kishore RSK, Reindl J, Ruckert P, Muller R (2010) Adsorption behavior of a surfactant and a monoclonal antibody to sterilizing-grade. J Pharma Sci 99:2620–2627

    CAS  Google Scholar 

  • Qi B, Chen X, Su Y, Wan Y (2011) Enzyme adsorption and recycling during hydrolysis of wheat straw lignocellulose. Biores Technol 102:2881–2889

    Article  CAS  Google Scholar 

  • Randolph TW, Jones LS (2002) Surfactant-protein interactions. In: Carpenter JF, Manning MC (eds) Rational design of stable protein formulations. Kluwer/Plenum, New York, pp 159–175

    Chapter  Google Scholar 

  • Selig MJ, Adney WS, Himmel ME, Decker SR (2009) The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes. Cellulose 16:711–722

    Article  CAS  Google Scholar 

  • Tu M, Chandra RP, Saddler JN (2007) Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnol Prog 23:1130–1137

    Article  PubMed  CAS  Google Scholar 

  • Tu M, Zhang X, Paice M, MacFarlane P, Saddler J (2009) The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Biores Technol 100:6407–6415

    Article  CAS  Google Scholar 

  • Varnai A, Viikari L, Marjamaa K, Siika-aho M (2011) Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. Biores Technol 102:1220–1227

    Article  CAS  Google Scholar 

  • Vinzant TB, Adney WS, Decker SR, Baker JO, Kinter MT, Sherman NE, Fox JW, Himmel ME (2001) Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase preparation. Appl Biochem Biotechnol 91–93:99–107

    Article  PubMed  Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Method Enzymol 160:87–112

    Article  CAS  Google Scholar 

  • Yang B, Wyman C (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrate. Biotechnol Bioeng 94:611–617

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the project “Demonstrating Industrial scale second generation bioethaol production—Kalundborg Cellulosic Ethanol Plant” under the EU FP7 framework program and the project “Development of improved second generation (2G) bioethanol technology to prepare for commercialization under the Danish Energy Technology and Demonstration Programme (EUDP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Chylenski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chylenski, P., Felby, C., Østergaard Haven, M. et al. Precipitation of Trichoderma reesei commercial cellulase preparations under standard enzymatic hydrolysis conditions for lignocelluloses. Biotechnol Lett 34, 1475–1482 (2012). https://doi.org/10.1007/s10529-012-0916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0916-5

Keywords

Navigation