Skip to main content
Log in

Fibroblast growth factor 2-functionalized collagen matrices for skeletal muscle tissue engineering

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 2 (FGF2) protein plays important roles in wound healing and tissue regeneration. Collagen is clinically used for wound care applications. We investigated the potential value of FGF2-functionalized collagen matrices for skeletal muscle tissue engineering. When C2C12 cells were treated with FGF2, cell adhesion increased after 3 and 5 days compared to the control (P < 0.05). Wound healing activity of FGF2 was slightly higher than the control through cell migration. Cell proliferation activity of FGF2-functionalized collagen matrices on C2C12 cells also increased. Taken together, FGF2 stimulated C2C12 myoblast growth by promoting cell adhesion, proliferation and wound healing activity after injury. The potential effect of FGF2-functionalized collagen matrices was also observed. Thus FGF2 stimulates skeletal muscle development and regeneration, thereby leading to potential utility for skeletal muscle tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson JE, Mitchell CM, Mcgeachie JK, Grounds MD (1995) The time course of basic fibroblast growth factor expression in crush-injured skeletal muscle of SJL/J and BALB/c mice. Exp Cell Res 216:325–334

    Article  PubMed  CAS  Google Scholar 

  • Bhang SH, Sun AY, Yang HS, Rhim T, Kim DI, Kim BS (2011) Skin regeneration with fibroblast growth factor 2 released from heparin-conjugated fibrin. Biotechnol Lett 33:845–851

    Article  PubMed  CAS  Google Scholar 

  • Di Lullo GA, Sweeney SM, Körkkö J, Ala-Kokko L, San Antonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277:4223–4231

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Cuevas P, Gimenez-Gallego G, Martinez-Murillo R, Tian H, Sheng Z (1996) Ischemia and reperfusion reduce the endogenous basic fibroblast growth factor in rat skeletal muscles: an immunohisto-chemical study. Wound Repair Regen 4:381–385

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Yang Y, Li X, Sun T, Wang Y, Sheng Z (1998) Ischemia and reperfusion impair the gene expression of endogenous basic fibroblast growth factor (bFGF) in rat skeletal muscles. J Surg Res 80:88–93

    Article  PubMed  CAS  Google Scholar 

  • Goldspink G (1999) Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat 194:323–334

    Article  PubMed  CAS  Google Scholar 

  • Gu C, Zheng R, Yang Z, Wen A, Wu H, Zhang H, Yi D (2009) Novel glycidyl methacrylated dextran/gelatin nanoparticles loaded with basic fibroblast growth factor: formulation and characteristics. Drug Dev Ind Pharm 35:1419–1429

    Article  PubMed  CAS  Google Scholar 

  • Harding KG, Morris HL, Patel GK (2002) Science, medicine and the future: healing chronic wounds. BMJ 324:160–163

    Article  PubMed  CAS  Google Scholar 

  • Jang JH, Chung CP (2004) Engineering and expression of a recombinant fusion protein possessing fibroblast growth factor-2 and fibronectin fragment. Biotechnol Lett 26:1837–1840

    Article  PubMed  CAS  Google Scholar 

  • Jang JH, Ku Y, Chung CP, Heo SJ (2002) Enhanced fibronectin-mediated cell adhesion of human osteoblast by fibroblast growth factor, FGF-2. Biotechnol Lett 24:1659–1663

    Article  CAS  Google Scholar 

  • Jeon E, Jang JH (2009) Protein engineering of a fibroblast growth factor 2 protein for targeting to bone mineral hydroxyapatite. Protein Pept Lett 16:664–667

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EW 3rd, Fridovich I (1975) Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J Biol Chem 250:8812–8817

    PubMed  CAS  Google Scholar 

  • Kwan MD, Sellmyer MA, Quarto N, Ho AM, Wandless TJ, Longaker MT (2011) Chemical control of FGF-2 release for promoting calvarial healing with adipose stem cells. J Biol Chem 286:11307–11313

    Article  PubMed  CAS  Google Scholar 

  • Lefaucheur JP, Sebille A (1995a) Basic fibroblast growth factor promotes in vivo muscle regeneration in murine muscular dystrophy. Neurosci Lett 202:121–124

    Article  PubMed  CAS  Google Scholar 

  • Lefaucheur JP, Sebille A (1995b) Muscle regeneration following injury can be modified in vivo by immune neutralization of basic fibroblast growth factor, transforming growth factor β1 or insulin-like growth factor I. J Neuroimmunol 57:85–91

    Article  PubMed  CAS  Google Scholar 

  • Madry H, Orth P, Kaul G, Zurakowski D, Menger MD, Kohn D, Cucchiarini M (2010) Acceleration of articular cartilage repair by combined gene transfer of human insulin-like growth factor I and fibroblast growth factor-2 in vivo. Arch Orthop Trauma Surg 130:1311–1322

    Article  PubMed  Google Scholar 

  • Manferdini C, Guarino V, Zini N, Raucci MG, Ferrari A, Grassi F, Gabusi E, Squarzoni S, Facchini A, Ambrosio L, Lisignoli G (2010) Mineralization behavior with mesenchymal stromal cells in a biomimetic hyaluronic acid-based scaffold. Biomaterials 31:3986–3996

    Article  PubMed  CAS  Google Scholar 

  • Nambu M, Ishihara M, Kishimoto S, Yanagibayashi S, Yamamoto N, Azuma R, Kanatani Y, Kiyosawa T, Mizuno H (2011) Stimulatory effect of autologous adipose tissue-derived stromal cells in an atelocollagen matrix on wound healing in diabetic db/db mice. J Tissue Eng 2011:158105

    PubMed  Google Scholar 

  • Nishikage S, Koyama H, Miyata T, Ishii S, Hamada H, Shigematsu H (2004) In vivo electroporation enhances plasmid-based gene transfer of basic fibroblast growth factor for the treatment of ischemic limb. J Surg Res 120:37–46

    Article  PubMed  CAS  Google Scholar 

  • Nugent MA, Newman MJ (1989) Inhibition of normal rat kidney cell growth by transforming growth factor-beta is mediated by collagen. J Biol Chem 264:18060–18067

    PubMed  CAS  Google Scholar 

  • Paralkar VM, Vukicevic S, Reddi AH (1991) Transforming growth factor beta type 1 binds to collagen IV of basement membrane matrix: implications for development. Dev Biol 143:303–308

    Article  PubMed  CAS  Google Scholar 

  • Parks DA, Bulkley GB, Granger DN (1983) Role of oxygen free radical in shock, ischemia and organ preservation. Surgery 94:428–432

    PubMed  CAS  Google Scholar 

  • Schmal H, Mehlhorn AT, Fehrenbach M, Müller CA, Finkenzeller G, Südkamp NP (2006) Regulative mechanisms of chondrocyte adhesion. Tissue Eng 12:741–750

    Article  PubMed  CAS  Google Scholar 

  • Schreier T, Degen E, Baschong W (1993) Fibroblast migration and proliferation during in vitro wound healing. Res Exp Med (Berl) 193:195–205

    Article  CAS  Google Scholar 

  • Schuppan D, Schmid M, Somasundaram R, Ackermann R, Ruehl M, Nakamura T, Riecken EO (1998) Collagens in the liver extracellular matrix bind hepatocyte growth factor. Gastroenterology 114:139–152

    Article  PubMed  CAS  Google Scholar 

  • Slater TF (1984) Free radical mechanisms in tissue injury. Biochem J 222:1–15

    PubMed  CAS  Google Scholar 

  • Somasundaram R, Schuppan D (1996) Type I, II, III, IV, V, and VI collagens serve as extracellular ligands for the isoforms of platelet-derived growth factor (AA, BB, and AB). J Biol Chem 271:26884–26891

    Article  PubMed  CAS  Google Scholar 

  • Still J, Glat P, Silverstein P, Griswold J, Mozingo D (2003) The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns 29:837–841

    Article  PubMed  Google Scholar 

  • Wright-Carpenter T, Klein P, Schäferhoff P, Appell HJ, Mir LM, Wehling P (2004) Treatment of muscle injuries by local administration of autologous conditioned serum: a pilot study on sportsmen with muscle strains. Int J Sports Med 25:588–593

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Xia T, Zhi W, Wei L, Weng J, Zhang C, Li X (2011) Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials 32:4243–4254

    Article  PubMed  CAS  Google Scholar 

  • Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW (2010) Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010:218142

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Priority Research Centers Program (grant#: 2009-0093829) and WCU (World Class University) program (grant#: R31-10069) through the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology, and by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-314-E00183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Hyeog Jang.

Additional information

Ye-Rang Yun, Sujin Lee, and Eunyi Jeon contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, YR., Lee, S., Jeon, E. et al. Fibroblast growth factor 2-functionalized collagen matrices for skeletal muscle tissue engineering. Biotechnol Lett 34, 771–778 (2012). https://doi.org/10.1007/s10529-011-0812-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0812-4

Keywords

Navigation