Skip to main content
Log in

Effect of iclR and arcA deletions on physiology and metabolic fluxes in Escherichia coli BL21 (DE3)

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Deletion of both iclR and arcA in E. coli profoundly alters the central metabolic fluxes and decreases acetate excretion by 70%. In this study we investigate the metabolic consequences of both deletions in E. coli BL21 (DE3). No significant differences in biomass yields, acetate yields, CO2 yields and metabolic fluxes could be observed between the wild type strain E. coli BL21 (DE3) and the double-knockout strain E. coli BL21 (DE3) ΔarcAΔiclR. This proves that arcA and iclR are poorly active in the BL21 wild type strain. Noteworthy, both strains co-assimilate glucose and acetate at high glucose concentrations (10–15 g l−1), while this was never observed in K12 strains. This implies that catabolite repression is less intense in BL21 strains compared to in E. coli K12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexeeva S, Hellingwerf KJ, de Mattos MJT (2003) Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J Bacteriol 185:204–209

    Article  PubMed  CAS  Google Scholar 

  • Andersen KB, von Meyenburg K (1980) Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol 144:114–123

    PubMed  CAS  Google Scholar 

  • Bettenbrock K, Sauter T, Jahreis K, Kremling A, Lengeler JW, Gilles ED (2007) Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. J Bacteriol 189:6891–6900

    Article  PubMed  CAS  Google Scholar 

  • Browning DF, Beatty CM, Sanstad EA, Gunn KE, Busby SJW, Wolfe AJ (2004) Modulation of crp-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by the nucleoid proteins fis and ihf. Mol Microbiol 51:241–254

    Article  PubMed  CAS  Google Scholar 

  • Brückner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148

    Article  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • De Mey M, Lequeux G, Beauprez J, Maertens J, Van Horen E, Soetaert W, Vanrolleghem P, Vandamme E (2007) Comparison of different strategies to reduce acetate formation in Escherichia coli. Biotechnol Prog 23:1053–1063

    PubMed  Google Scholar 

  • Dien BS, Nichols NN, Bothast RJ (2002) Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid. J Ind Microbiol Biotechnol 29:221–227

    Article  PubMed  CAS  Google Scholar 

  • El-Mansi M, Cozzone AJ, Shiloach J, Eikmanns BJ (2006) Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate. Curr Opin Microbiol 9:173–179

    Article  PubMed  CAS  Google Scholar 

  • Epstein W, Rothman-Denes LB, Hesse J (1975) Adenosine 3′:5′-cyclic monophosphate as mediator of catabolite repression in Escherichia coli. Proc Natl Acad Sci USA 72:2300–2304

    Article  PubMed  CAS  Google Scholar 

  • Fischer E, Sauer U (2003) A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J Biol Chem 278:46446–46451

    Article  PubMed  CAS  Google Scholar 

  • Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Fact 4:14

    Article  PubMed  Google Scholar 

  • Hernández-Montalvo V, Valle F, Bolivar F, Gosset G (2001) Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system. Appl Microbiol Biotechnol 57:186–191

    Article  PubMed  Google Scholar 

  • Hernández-Montalvo V, Martínez A, Hernández-Chavez G, Bolivar F, Valle F, Gosset G (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 83:687–694

    Article  PubMed  Google Scholar 

  • Kleman GL, Strohl WR (1994) Acetate metabolism by Escherichia coli in high-cell-density fermentation. Appl Environ Microbiol 60:3952–3958

    PubMed  CAS  Google Scholar 

  • Kumari S, Tishel R, Eisenbach M, Wolfe AJ (1995) Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 177:2878–2886

    PubMed  CAS  Google Scholar 

  • Lin H, Bennett GN, San KY (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng 7:116–127

    Article  PubMed  CAS  Google Scholar 

  • Luli GW, Strohl WR (1990) Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol 56:1004–1011

    PubMed  CAS  Google Scholar 

  • Maharjan RP, Yu PL, Seeto S, Ferenci T (2005) The role of isocitrate lyase and the glyoxylate cycle in Escherichia coli growing under glucose limitation. Res Microbiol 156:178–183

    Article  Google Scholar 

  • Maloy SR, Nunn WD (1982) Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J Bacteriol 149:173–180

    PubMed  CAS  Google Scholar 

  • Negrete A, Ng WI, Shiloach J (2010) Glucose uptake regulation in E. coli by the small RNA SgrS: comparative analysis of E. coli K-12 (JM109 and MG1655) and E. coli B (BL21). Microb Cell Fact 9:75

    Article  PubMed  Google Scholar 

  • Nichols NN, Dien BS, Bothast RJ (2001) Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol 56:120–125

    Article  PubMed  CAS  Google Scholar 

  • Noronha SB, Yeh HJ, Spande TF, Shiloach J (2000) Investigation of the TCA cycle and the glyoxylate shunt in Escherichia coli BL21 and JM109 using (13)C-NMR/MS. Biotechnol Bioeng 68:316–327

    Article  PubMed  CAS  Google Scholar 

  • Perrenoud A, Sauer U (2005) Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol 187:3171–3179

    Article  PubMed  CAS  Google Scholar 

  • Phue JN, Shiloach J (2004) Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J Biotechnol 109:21–30

    Article  PubMed  CAS  Google Scholar 

  • Phue JN, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloach J (2005) Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and northern blot analyses. Biotechnol Bioeng 90:805–820

    Article  PubMed  CAS  Google Scholar 

  • Salmon KA, pin Hung S, Steffen NR, Krupp R, Baldi P, Hatfield GW, Gunsalus RP (2005) Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA. J Biol Chem 280:15084–15096

    Article  PubMed  CAS  Google Scholar 

  • Shiloach J, Kaufman J, Guillard AS, Fass R (1996) Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (lambdaDE3) and Escherichia coli JM109. Biotechnol Bioeng 49:421–428

    Article  PubMed  CAS  Google Scholar 

  • Waegeman H, Beauprez J, Maertens J, De Mey M, Demolder L, Foulquié-Moreno MR, Boon N, Charlier D, Soetaert W (2010) Validation study of 24 deepwell microtiterplates to screen libraries of strains in metabolic engineering. J Biosci Bioeng 110:646–652

    Article  PubMed  CAS  Google Scholar 

  • Waegeman H, Beauprez J, Moens H, Maertens J, De Mey M, Foulquié-Moreno MR, Heijnen JJ, Charlier D, Soetaert W (2011) Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). BMC Microbiol 11:70

    Article  PubMed  CAS  Google Scholar 

  • Zamboni N, Fischer E, Sauer U (2005) FiatFlux-a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:209

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Special Research Fund (BOF) of Ghent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Waegeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waegeman, H., Maertens, J., Beauprez, J. et al. Effect of iclR and arcA deletions on physiology and metabolic fluxes in Escherichia coli BL21 (DE3). Biotechnol Lett 34, 329–337 (2012). https://doi.org/10.1007/s10529-011-0774-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0774-6

Keywords

Navigation