Skip to main content
Log in

H2 production from CO, formate or starch using the hyperthermophilic archaeon, Thermococcus onnurineus

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The hyperthermophilic archaeon, Thermococcus onnurineus, was grown in media supplemented with either CO, formate, or starch. H2 was produced with each substrate with respective maximum rates of 1.55, 3.83 and 2.66 mmol H2/l h. The yields (mol H2/mol substrate) were 0.98, 1 and 3.13, respectively. This microbe is the first example where a single microorganism can grow and produce H2 using CO, formate or starch as substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bae SS, Kim YJ, Yang SH, Lim JK et al (2006) Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J Microbiol Biotechnol 16:1826–1831

    CAS  Google Scholar 

  • Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol 32:781–791

    PubMed  CAS  Google Scholar 

  • Chou CJ, Jenney FE, Adams MWW, Kelly RM (2008) Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metab Eng 10:394–404

    Article  PubMed  CAS  Google Scholar 

  • Claassen PAM, Van Lier JB, Lopez Contreras AM et al (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755

    Article  CAS  Google Scholar 

  • Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energ 26:13–28

    Article  CAS  Google Scholar 

  • Holden JF, Takai K, Summit M, Bolton S, Zyskowski J, Baross JA (2001) Diversity among three novel groups of hyperthermophilic deep-sea Thermococcus species from three sites in the northeastern Pacific Ocean. FEMS Microbiol Ecol 36:51–60

    Article  PubMed  CAS  Google Scholar 

  • Kadar Z, De Vrije T, Van Noorden GE et al (2004) Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol 114:497–508

    Article  Google Scholar 

  • Kanai T, Imanaka H, Nakajima A, Uwamori K et al (2005) Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J Biotechnol 116:271–282

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK et al (2010) Formate-driven growth coupled with H2 production. Nature 467:352–355

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Kang SG, Bae SS, Lim JK et al (2008) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190:7491–7499

    Article  PubMed  CAS  Google Scholar 

  • Lim JK, Kang SG, Lebedinsky AV, Lee JH, Lee HS (2010) Identification of a novel class of membrane-bound [NiFe]-hydrogenases in Thermococcus onnurineus NA1 by in silico analysis. Appl Environ Microbiol 76:6286–6289

    Article  PubMed  CAS  Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529

    Article  PubMed  CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Sapra R, Bagramyan K, Adams MW (2003) A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci 100:7545–7550

    Article  PubMed  CAS  Google Scholar 

  • Schicho RN, Ma K, Adams MW, Kelly RM (1993) Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 175:1823–1830

    PubMed  CAS  Google Scholar 

  • Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA et al (2004) The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Microbiol Mol Biol Rev 41:100–180

    CAS  Google Scholar 

  • Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renewable Sustainable Energy Rev 13:1000–1013

    Article  CAS  Google Scholar 

  • Verhagen MF, Adams MW (2001) Fe-only hydrogenase from Thermotoga maritima. Methods Enzymol 331:216–226

    Article  PubMed  CAS  Google Scholar 

  • Woodward J, Orr M, Cordray K, Greenbaum E (2000) Biotechnology: enzymatic production of biohydrogen. Nature 405:1014–1015

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Marine and Extreme Genome Research Centre and the Development of Biohydrogen Production Technology using the Hyperthermophilic Archaea program of the Ministry of Land, Transport, and Maritime Affairs in the Republic of South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Gyun Kang.

Additional information

Seung Seob Bae and Tae Wan Kim equally contributed to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, S.S., Kim, T.W., Lee, H.S. et al. H2 production from CO, formate or starch using the hyperthermophilic archaeon, Thermococcus onnurineus . Biotechnol Lett 34, 75–79 (2012). https://doi.org/10.1007/s10529-011-0732-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0732-3

Keywords

Navigation