Skip to main content
Log in

Tools for high-spatial and temporal-resolution analysis of environmental responses in plants

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Understanding how plants cope with environmental change requires a spatiotemporal perspective. In this review, we highlight recent work which has led to the development and use of novel tools for the high spatial and temporal-resolution analysis of the plant–environment interaction. FACS-based transcriptome and immunoprecipitation-based translatome data sets have provided an important foundation for the analysis of the transcriptional and translational control of environmental responses in each tissue layer of the plant. Complementary approaches, based on a proteomic toolkit, have provided insight into the biological response of Arabidopsis to NaCl and the relationship between transcript and protein levels. The development and adaptation of biosensors and ion-specific dyes provides the capacity to visualize changes in the transport and accumulation of metabolites and small molecules such as sugars, Na+ and Ca2+ at the cellular level. Finally, live-imaging approaches coupled with automated image-analysis algorithms are revealing new levels of dynamism and plasticity in the response to light and gravity. Together, these tools will provide a more comprehensive understanding of environmental responses in plants, which will aide in the development of new crop varieties for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amme S, Matros A, Schlesier B et al (2006) Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. J Exp Bot 57:1537–1546

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA et al (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Baerenfaller K, Grossmann J, Grobei MA et al (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320:938–941

    Article  CAS  PubMed  Google Scholar 

  • Barakat A, Szick-Miranda K, Chang IF et al (2001) The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol 127:398–415

    Article  CAS  PubMed  Google Scholar 

  • Baxter CJ, Redestig H, Schauer N et al (2007) The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol 143:312–325

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY et al (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum K, Jung JW, Wang JY et al (2005) Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat Methods 2:615–619

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Brady SM, Orlando DA, Lee JY et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  CAS  PubMed  Google Scholar 

  • Branco-Price C, Kawaguchi R, Ferreira RB et al (2005) Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann Bot 96:647–660

    Article  CAS  PubMed  Google Scholar 

  • Branco-Price C, Kaiser KA, Jang CJ et al (2008) Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. Plant J 56:743–755

    Article  CAS  PubMed  Google Scholar 

  • Brooks TL, Miller ND, Spalding EP (2010) Plasticity of Arabidopsis root gravitropism throughout a multidimensional condition space quantified by automated image analysis. Plant Physiol 152:206–216

    Article  CAS  PubMed  Google Scholar 

  • Brosche M, Vinocur B, Alatalo ER (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol 6:R101

    Article  PubMed  Google Scholar 

  • Chaudhuri B, Hormann F, Lalonde S (2008) Protonophore- and pH-insensitive glucose and sucrose accumulation detected by FRET nanosensors in Arabidopsis root tips. Plant J 56:948–962

    Article  CAS  PubMed  Google Scholar 

  • Cicchetti G, Biernacki M, Farquharson J et al (2004) A ratiometric expressible FRET sensor for phosphoinositides displays a signal change in highly dynamic membrane structures in fibroblasts. Biochemistry 43:1939–1949

    Article  CAS  PubMed  Google Scholar 

  • Cook D, Fowler S, Fiehn O et al (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248

    Article  CAS  PubMed  Google Scholar 

  • Deuschle K, Okumoto S, Fehr M et al (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14:2304–2314

    Article  CAS  PubMed  Google Scholar 

  • Deuschle K, Chaudhuri B, Okumoto S et al (2006) Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell 18:2314–2325

    Article  CAS  PubMed  Google Scholar 

  • Dinneny JR (2009) Analysis of the salt-stress response at cell-type resolution. Plant Cell Environ. doi:10.1111/j.1365-3040.2009.02055.x

  • Dinneny JR, Benfey PN (2009) Studying root development using a genomic approach. Annual Plant Reviews, Volume 37, Root Development Chapter 12, pp 325–351. Blackwell Publishing

  • Dinneny JR, Long TA, Wang JY et al (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945

    Article  CAS  PubMed  Google Scholar 

  • Dooley CT, Dore TM, Hanson GT et al (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279:22284–22293

    Article  CAS  PubMed  Google Scholar 

  • Evanko DS, Haydon PG (2005) Elimination of environmental sensitivity in a cameleon FRET-based calcium sensor via replacement of the acceptor with Venus. Cell Calcium 37:341–348

    Article  CAS  PubMed  Google Scholar 

  • Fehr M, Frommer WB, Lalonde S (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci USA 99:9846–9851

    Article  CAS  PubMed  Google Scholar 

  • Folta KM, Spalding EP (2001) Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J 26:471–478

    Article  CAS  PubMed  Google Scholar 

  • Frommer WB, Davidson MW, Campbell RE (2009) Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38:2833–2841

    Article  CAS  PubMed  Google Scholar 

  • Gasch AP, Eisen MB (2002) Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol 3:RESEARCH0059

    Google Scholar 

  • Gifford ML, Dean A, Gutierrez RA et al (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105:803–808

    Article  CAS  PubMed  Google Scholar 

  • Hanson GT, Aggeler R, Oglesbee D (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053

    Article  CAS  PubMed  Google Scholar 

  • Heim N, Griesbeck O (2004) Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J Biol Chem 279:14280–14286

    Article  CAS  PubMed  Google Scholar 

  • Hellwig N, Plant TD, Janson W (2004) TRPV1 acts as proton channel to induce acidification in nociceptive neurons. J Biol Chem 279:34553–34561

    Article  CAS  PubMed  Google Scholar 

  • Hernandez G, Ramirez M, Valdes-Lopez O (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767

    Article  CAS  PubMed  Google Scholar 

  • Honda A, Adams SR, Sawyer CL (2001) Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc Natl Acad Sci USA 98:2437–2442

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Heo WD, Grimley JS et al (2005) An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat Methods 2:415–418

    Article  CAS  PubMed  Google Scholar 

  • Iyer-Pascuzzi A, Simpson J, Herrera-Estrella L et al (2009) Functional genomics of root growth and development in Arabidopsis. Curr Opin Plant Biol 12:165–171

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25

    Article  PubMed  Google Scholar 

  • Jiang K, Schwarzer C, Lally E et al (2006) Expression and characterization of a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in Arabidopsis. Plant Physiol 141:397–403

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Yang B, Harris NS et al (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607

    Article  CAS  PubMed  Google Scholar 

  • Jubany-Mari T, Alegre-Batlle L, Jiang K et al (2010) Use of a redox-sensing GFP (c-roGFP1) for real-time monitoring of cytosol redox status in Arabidopsis thaliana water-stressed plants. FEBS Lett 584:889–897

    Article  CAS  PubMed  Google Scholar 

  • Jurgens G (2004) Membrane trafficking in plants. Annu Rev Cell Dev Biol 20:481–504

    Article  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Sung DY (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  CAS  PubMed  Google Scholar 

  • Karasawa S, Araki T, Nagai T et al (2004) Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J 381:307–312

    Article  CAS  PubMed  Google Scholar 

  • Kuner T, Augustine GJ (2000) A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27:447–459

    Article  CAS  PubMed  Google Scholar 

  • Kunkel MT, Ni Q, Tsien RY et al (2005) Spatio-temporal dynamics of protein kinase B/Akt signaling revealed by a genetically encoded fluorescent reporter. J Biol Chem 280:5581–5587

    Article  CAS  PubMed  Google Scholar 

  • Le Lay P, Isaure MP, Sarry JE et al (2006) Metabolomic, proteomic and biophysical analyses of Arabidopsis thaliana cells exposed to a caesium stress. Influence of potassium supply. Biochimie 88:1533–1547

    Article  CAS  PubMed  Google Scholar 

  • Leshem Y, Melamed-Book N, Cagnac O et al (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA 103:18008–18013

    Article  CAS  PubMed  Google Scholar 

  • Liscum E, Hangarter RP (1993) Light-stimulated apical hook opening in wild-type Arabidopsis thaliana seedlings. Plant Physiol 101:567–572

    PubMed  Google Scholar 

  • Looger LL, Lalonde S, Frommer WB (2005) Genetically encoded FRET sensors for visualizing metabolites with subcellular resolution in living cells. Plant Physiol 138:555–557

    Article  CAS  PubMed  Google Scholar 

  • Meier SD, Kovalchuk Y, Rose CR (2006) Properties of the new fluorescent Na+ indicator CoroNa Green: comparison with SBFI and confocal Na+ imaging. J Neurosci Methods 155:251–259

    Article  CAS  PubMed  Google Scholar 

  • Miller ND, Parks BM, Spalding EP (2007) Computer-vision analysis of seedling responses to light and gravity. Plant J 52:374–381

    Article  CAS  PubMed  Google Scholar 

  • Moller IS, Gilliham M, Jha D et al (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178

    Article  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Mustroph A, Zanetti ME, Jang CJ et al (2009) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci USA 106:18843–18848

    Article  CAS  PubMed  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR et al (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova VJ, Gakiere B, Kempa S et al (2004) Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. J Exp Bot 55:1861–1870

    Article  CAS  PubMed  Google Scholar 

  • Oh DH, Leidi E, Zhang Q et al (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222

    Article  CAS  PubMed  Google Scholar 

  • Oh DH, Lee SY, Bressan RA et al (2010) Intracellular consequences of SOS1 deficiency during salt stress. J Exp Bot 61:1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Okumoto S, Looger LL, Micheva KD et al (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci USA 102:8740–8745

    Article  CAS  PubMed  Google Scholar 

  • Parks BM, Folta KM, Spalding EP (2001) Photocontrol of stem growth. Curr Opin Plant Biol 4:436–440

    Article  CAS  PubMed  Google Scholar 

  • Preiss T, Hentze MW (2003) Starting the protein synthesis machine: eukaryotic translation initiation. Bioessays 25:1201–1211

    Article  CAS  PubMed  Google Scholar 

  • Riesmeier JW, Willmitzer L, Frommer WB (1992) Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J 11:4705–4713

    CAS  PubMed  Google Scholar 

  • Romoser VA, Hinkle PM, Persechini A (1997) Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators. J Biol Chem 272:13270–13274

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Ozawa T, Inukai K et al (2002) Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat Biotechnol 20:287–294

    Article  CAS  PubMed  Google Scholar 

  • Seth A, Otomo T, Yin HL et al (2003) Rational design of genetically encoded fluorescence resonance energy transfer-based sensors of cellular Cdc42 signaling. Biochemistry 42:3997–4008

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Lee BH, Wu SJ et al (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  CAS  PubMed  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA et al (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781

    Article  CAS  PubMed  Google Scholar 

  • Stolz J, Stadler R, Opekarova M et al (1994) Functional reconstitution of the solubilized Arabidopsis thaliana STP1 monosaccharide-H+ symporter in lipid vesicles and purification of the histidine tagged protein from transgenic Saccharomyces cerevisiae. Plant J 6:225–233

    Article  CAS  PubMed  Google Scholar 

  • Takemoto K, Nagai T, Miyawaki A et al (2003) Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol 160:235–243

    Article  CAS  PubMed  Google Scholar 

  • Violin JD, Zhang J, Tsien RY et al (2003) A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol 161:899–909

    Article  CAS  PubMed  Google Scholar 

  • Warner JR, McIntosh KB (2009) How common are extraribosomal functions of ribosomal proteins? Mol Cell 34:3–11

    Article  CAS  PubMed  Google Scholar 

  • Widodo JH, Newbigin E, Tester M et al (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Aharon GS, Sottosanto JB et al (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci USA 102:16107–16112

    Article  CAS  PubMed  Google Scholar 

  • Zaccolo M (2004) Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ Res 94:866–873

    Article  CAS  PubMed  Google Scholar 

  • Zanetti ME, Chang IF, Gong F et al (2005) Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol 138:624–635

    Article  CAS  PubMed  Google Scholar 

  • Zeller G, Henz SR, Widmer CK et al (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Qu H, Dibley KE et al (2007) A suite of sucrose transporters expressed in coats of developing legume seeds includes novel pH-independent facilitators. Plant J 49:750–764

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 72:783–812

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work on environmental responses in plants in the lab of J.R.D. is funded by the Temasek Lifesciences Laboratory and the National Research Foundation of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Dinneny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wee, C.W., Dinneny, J.R. Tools for high-spatial and temporal-resolution analysis of environmental responses in plants. Biotechnol Lett 32, 1361–1371 (2010). https://doi.org/10.1007/s10529-010-0307-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-010-0307-8

Keywords

Navigation