Skip to main content
Log in

Genetic engineering of Enterobacter asburiae strain JDR-1 for efficient d(−) lactic acid production from hemicellulose hydrolysate

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

In the dilute acid pretreatment of lignocellulose, xylose substituted with α-1,2-methylglucuronate is released as methylglucuronoxylose (MeGAX), which cannot be fermented by biocatalysts currently used to produce biofuels and chemicals. Enterobacter asburiae JDR-1, isolated from colonized wood, efficiently fermented both MeGAX and xylose in acid hydrolysates of sweetgum xylan. Deletion of pflB and als genes in this bacterium modified the native mixed acid fermentation pathways to one for homolactate production. The resulting strain, Enterobacter asburiae L1, completely utilized both xylose and MeGAX in a dilute acid hydrolysate of sweetgum xylan and produced lactate approximating 100% of the theoretical maximum yield. Enterobacter asburiae JDR-1 offers a platform to develop efficient biocatalysts for production of fuels and chemicals from hemicellulose hydrolysates of hardwood and agricultural residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Babson AL, Babson SR (1973) Kinetic colorimetric measurement of serum lactate dehydrogenase activity. Clin Chem 19:766–769

    PubMed  CAS  Google Scholar 

  • Bi C, Rice JD, Preston JF (2009) Complete fermentation of xylose and methylglucuronoxylose derived from methylglucuronoxylan by Enterobacter asburiae strain JDR-1. Appl Environ Microbiol 75:395–404

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Hurlbert JC, Preston JF (2001) Functional characterization of a novel xylanase from a corn strain of Erwinia chrysanthemi. J Bacteriol 183:2093–2100

    Article  PubMed  CAS  Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    PubMed  CAS  Google Scholar 

  • Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou SD (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866

    Article  PubMed  CAS  Google Scholar 

  • Jacobs A, Larsson PT, Dahlman O (2001) Distribution of uronic acids in xylans from various species of soft- and hardwood as determined by MALDI mass spectrometry. Biomacromolecules 2:979–990

    Article  PubMed  CAS  Google Scholar 

  • Jantama K, Haupt MJ, Svoronos SA, Zhang XL, Moore JC, Shanmugam KT, Ingram LO (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99:1140–1153

    Article  PubMed  CAS  Google Scholar 

  • Kardosova A, Matulova M, Malovikova A (1998) (4-O-methyl-alpha-d-glucurono)-d-xylan from Rudbeckia fulgida, var. sullivantii (Boynton et Beadle). Carbohydr Res 308:99–105

    Article  PubMed  CAS  Google Scholar 

  • Lee YY, Iyer P, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol 65:93–115

    CAS  Google Scholar 

  • McMillan JD (1997) Bioethanol production: status and prospects. Renew Energy 10:295–302

    Article  CAS  Google Scholar 

  • Moat AG, Foster JW, Spector MP (2002) Microbial physiology, 4th edn. Wiley-Liss, New York

    Google Scholar 

  • Preston JF, Hurlbert JC, Rice JD, Ragunathan A, St John FJ (2003) Microbial strategies for the depolymerization of glucuronoxylan: leads to biotechnological applications of endoxylanases. In: Mansfield SD, Sandler JN (eds) Applications of enzymes to lignocellulosics. American Chemical Society, Washington, DC, pp 191–210

    Chapter  Google Scholar 

  • Rodriguez M, Martinez EA, York SW, Zuobi-Hasona K, Ingram LO, Shanmugam KT and Preston JF (2001) Properties of the hemicellulose fractions of lignocellulosic biomass affecting bacterial ethanol production. Abstracts of the 101st national meetings of the American Society of Microbiology meetings in Orlando, FL, USA, p 535

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Prog 21:816–822

    Article  PubMed  CAS  Google Scholar 

  • Shanmugam KT, Ingram LO (2008) Engineering biocatalysts for production of commodity chemicals. J Mol Microbiol Biotechnol 15:8–15

    Article  PubMed  CAS  Google Scholar 

  • Taguchi H, Ohta T (1991) d-lactate dehydrogenase is a member of the d-isomer-specific 2-hydroxyacid dehydrogenase family—cloning, sequencing, and expression in Escherichia coli of the d-Lactate dehydrogenase gene of Lactobacillus plantarum. J Biol Chem 266:12588–12594

    PubMed  CAS  Google Scholar 

  • Timell TE (1964) Wood hemicelluloses. Adv Carbohydr Chem 19:247–302

    PubMed  CAS  Google Scholar 

  • Wood BE, Yomano LP, York SW, Ingram LO (2005) Development of industrial medium required elimination of the 2, 3-butanediol fermentation pathway to maintain ethanol yield in an ethanologenic strain of Klebsiella oxytoca. Biotechnol Prog 21:1366–1372

    Article  PubMed  CAS  Google Scholar 

  • Zucker M, Hankin L (1970) Regulation of pectate lyase synthesis in Pseudomonas fluorescens and Erwinia carotovora. J Bacteriol 104:13–18

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor K.T. Shanmugam for helpful direction and discussions. This research was supported by U.S. Department of Energy grants DE FC36-99GO10476 and DE FC36-00GO10594. The Consortium for Plant Biotechnology Research Project GO12026-198 (DE FG36-02GO12026), and the Institute of Food and Agricultural Sciences, University of Florida Experiment Station, as CRIS Project MCS 3763.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Preston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, C., Zhang, X., Rice, J.D. et al. Genetic engineering of Enterobacter asburiae strain JDR-1 for efficient d(−) lactic acid production from hemicellulose hydrolysate. Biotechnol Lett 31, 1551–1557 (2009). https://doi.org/10.1007/s10529-009-0044-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-0044-z

Keywords

Navigation