Skip to main content

Advertisement

Log in

The treatment of hemophilia A: from protein replacement to AAV-mediated gene therapy

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Factor VIII (FVIII) is an essential component in blood coagulation, a deficiency of which causes the serious bleeding disorder hemophilia A. Recently, with the development of purification level and recombinant techniques, protein replacement treatment to hemophiliacs is relatively safe and can prolong their life expectancy. However, because of the possibility of unknown contaminants in plasma-derived FVIII and recombinant FVIII, and high cost for hemophiliacs to use these products, gene therapy for hemophilia A is an attractive alternative to protein replacement therapy. Thus far, the adeno-associated virus (AAV) is a promising vector for gene therapy. Further improvement of the virus for clinical application depends on better understanding of the molecular structure and fate of the vector genome. It is likely that hemophilia will be the first genetic disease to be cured by somatic cell gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akahoshi M, Aizawa K, Nagano S et al (2008) Acquired hemophilia in a patient with systemic lupus erythematosus: a case report and literature review. Mod Rheumatol Jun 13

  • Alvarado Y, Yao X, Jumper C et al (2007) Acquired hemophilia: a case report of 2 patients with acquired factor VIII inhibitor treated with Rituximab plus a short course of steroid and review of the literature. Clin Appl Thromb Hemost 13:443–448

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Raney KD, Liu Y et al (2008) AAV-2 Rep78 and HPV-16 E1 interact in vitro, modulating their ATPase activity. Biochemistry 47:845–856

    Article  PubMed  CAS  Google Scholar 

  • Bi L, Lawler AM, Antonarakis SE et al (1995) Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 10:119–121

    Article  PubMed  CAS  Google Scholar 

  • Bleker S, Pawlita M, Kleinschmidt JA (2006) Impact of capsid conformation and Rep-capsid interactions on adeno-associated virus type 2 genome packaging. J Virol 80:810–820

    Article  PubMed  CAS  Google Scholar 

  • Bristol JA, Gallo-Penn A, Andrews J et al (2001) Adenovirus-mediated Factor VIII gene expression results in attenuated anti-Factor VIII-specific immunity in hemophilia A mice compared with Factor VIII protein infusion. Hum Gene Ther 12:1651–1661

    Article  PubMed  CAS  Google Scholar 

  • Brown BD, Cantore A, Annoni A et al (2007) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110:4144–4152

    Article  PubMed  CAS  Google Scholar 

  • Brunetti-Pierri N, Nichols TC, McCorquodale S et al (2005) Sustained phenotypic correction of canine hemophilia B after systemic administration of helper-dependent adenoviral vector. Hum Gene Ther 16:811–820

    Article  PubMed  CAS  Google Scholar 

  • Cameron C, Notley C, Hoyle S et al (1998) The canine factor VIII cDNA and 5′-flanking sequence. Thromb Haemost 79:317–322

    PubMed  CAS  Google Scholar 

  • Chao H, Walsh CE (2002) Hemophilia gene therapy: novel rAAV vectors and RNA repair strategy. Curr Opin Mol Ther 4:499–504

    PubMed  CAS  Google Scholar 

  • Chao H, Mansfield SG, Bartel RC et al (2003) Phenotype correction of hemophilia A mice by spliceosome-mediated RNA trans-splicing. Nat Med 9:1015–1019

    Article  PubMed  CAS  Google Scholar 

  • Chen H (2008) Intron splicing-mediated expression of AAV Rep and Cap genes and production of AAV vectors in insect cells. Mol Ther 16:924–930

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Zhu F, Li J et al (2007) The enhancing effects of the light chain on heavy chain secretion in split delivery of factor VIII gene. Mol Ther 15:1856–1862

    Article  PubMed  CAS  Google Scholar 

  • Chiorini JA, Yang L, Liu Y et al (1997) Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol 71:6823–6833

    PubMed  CAS  Google Scholar 

  • Choi VW, Asokan A, Haberman RA et al (2007) Production of recombinant adeno-associated viral vectors. Curr Protoc Hum Genet Chapter 12:Unit 12.9

  • Collins P, Budde U, Rand JH et al (2008) Epidemiology and general guidelines of the management of acquired haemophilia and von Willebrand syndrome. Haemophilia 14:49–55

    Article  PubMed  Google Scholar 

  • Couto LB, Pierce GF (2003) AAV-mediated gene therapy for hemophilia. Curr Opin Mol Ther 5:517–523

    PubMed  CAS  Google Scholar 

  • Durocher Y, Pham PL, St-Laurent G et al (2007) Scalable serum-free production of recombinant adeno-associated virus type 2 by transfection of 293 suspension cells. J Virol Methods 144:32–40

    Article  PubMed  CAS  Google Scholar 

  • Evans JP, Brinkhous KM, Brayer GD et al (1989) Canine hemophilia B resulting from a point mutation with unusual consequences. Proc Natl Acad Sci 86:10095–10099

    Article  PubMed  CAS  Google Scholar 

  • Fechner H, Sipo I, Westermann D et al (2008) Cardiac-targeted RNA interference mediated by an AAV9 vector improves cardiac function in coxsackievirus B3 cardiomyopathy. J Mol Med Jun 12

  • Flisiński M, Windyga J, Stefańska E et al (2008) Acquired hemophilia: a case report. Pol Arch Med Wewn 118:228–233

    PubMed  Google Scholar 

  • Fricker J (2001) Viral gene therapy for haemophilia. Drug Discov Today 6:165–166

    Article  PubMed  Google Scholar 

  • Gao GP, Alvira MR, Wang L et al (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci 99:11854–11859

    Article  PubMed  CAS  Google Scholar 

  • García-Martín C, Chuah MK, Van Damme A et al (2002) Therapeutic levels of human factor VIII in mice implanted with encapsulated cells: potential for gene therapy of haemophilia A. J Gene Med 4:215–223

    Article  PubMed  Google Scholar 

  • Hallek M, Girod A, Braun Falco M et al (1998) Recombinant adeno-associated virus vectors. IDrugs 1:561–573

    PubMed  CAS  Google Scholar 

  • Hauck B, Xu RR, Xie J et al (2006) Efficient AAV1-AAV2 hybrid vector for gene therapy of hemophilia. Hum Gene Ther 17:46–54

    Article  PubMed  CAS  Google Scholar 

  • High KA (2001) AAV-mediated gene transfer for hemophilia. Ann N Y Acad Sci 953:64–74

    Article  PubMed  CAS  Google Scholar 

  • High K (2002) AAV-mediated gene transfer for hemophilia. Genet Med 4:56–61

    Article  Google Scholar 

  • Jiang H, Lillicrap D, Patarroyo-White S et al (2006) Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood 108:107–115

    Article  PubMed  CAS  Google Scholar 

  • Kasuda S, Kubo A, Sakurai Y et al (2008) Establishment of embryonic stem cells secreting human factor VIII for cell-based treatment of hemophilia A. J Thromb Haemost May 15

  • Kaufman RJ (1999) Advances toward gene therapy for hemophilia at the millennium. Hum Gene Ther 10:2091–2107

    Article  PubMed  CAS  Google Scholar 

  • Klein RL, Dayton RD, Tatom JB et al (2008) Tau expression levels from various adeno-associated virus vector serotypes produce graded neurodegenerative disease states. Eur J NeuroSci 27:1615–1625

    Article  PubMed  Google Scholar 

  • Larson PJ, High KA (2001) Gene therapy for hemophilia B: AAV-mediated transfer of the gene for coagulation factor IX to human muscle. Adv Exp Med Biol 489:45–57

    PubMed  CAS  Google Scholar 

  • Li C, Samulski RJ (2005) Serotype-specific replicating AAV helper constructs increase recombinant AAV type 2 vector production. Virology 335:10–21

    Article  PubMed  CAS  Google Scholar 

  • Lin HF, Maeda N, Smithies O et al (1997) A coagulation factor IX-deficient mouse model for human hemophilia B. Blood 90:3962–3966

    PubMed  CAS  Google Scholar 

  • Lu H, Chen L, Wang J et al (2008) Complete correction of hemophilia A with adeno-associated viral vectors containing a full-size expression cassette. Hum Gene Ther 19:648–654

    Article  PubMed  CAS  Google Scholar 

  • Mahipal A, Bilgrami S (2007) Acquired hemophilia in chronic lymphocytic leukemia. Leuk Lymphoma 48:1026–1028

    Article  PubMed  Google Scholar 

  • Maina N, Han Z, Li X et al (2008) Recombinant self-complementary adeno-associated virus serotype vector-mediated hematopoietic stem cell transduction and lineage-restricted, long-term transgene expression in a murine serial bone marrow transplantation model. Hum Gene Ther 19:376–383

    Article  PubMed  CAS  Google Scholar 

  • Mannucci PM, Tuddenham EG (2001) The hemophilias: from royal genes to gene therapy. N Engl J Med 344:1773–1779

    Article  PubMed  CAS  Google Scholar 

  • Miyagi N, Rao VP, Ricci D et al (2008) Efficient and durable gene transfer to transplanted heart using adeno-associated virus 9 vector. J Heart Lung Transplant 27:554–560

    Article  PubMed  Google Scholar 

  • Mori S, Wang L, Takeuchi T et al (2004) Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. Virology 330:375–383

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Takeuchi T, Enomoto Y et al (2008) Tissue distribution of cynomolgus adeno-associated viruses AAV10, AAV11, and AAVcy.7 in naturally infected monkeys. Arch Virol 153:375–380

    Article  PubMed  CAS  Google Scholar 

  • Murphy SL, High KA (2008) Gene therapy for haemophilia. Br J Haematol 140:479–487

    Article  PubMed  CAS  Google Scholar 

  • Nakai H, Storm TA, Kay MA et al (2000) Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo. J Virol 74:9451–9463

    Article  PubMed  CAS  Google Scholar 

  • Nam HJ, Lane MD, Padron E et al (2007) Structure of adeno-associated virus serotype 8, a gene therapy vector. J Virol 81:12260–12271

    Article  PubMed  CAS  Google Scholar 

  • Ragni MV (2004) Hemophilia gene transfer: comparison with conventional protein replacement therapy. Semin Thromb Hemost 30:239–247

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez MH, Plantier JL, Enjolras N et al (2004) Biosynthesis of FVIII in megakaryocytic cells: improved production and biochemical characterization. Br J Haematol 127:568–575

    Article  PubMed  CAS  Google Scholar 

  • Ruffing M, Heid H, Kleinschmidt JA (1994) Mutations in the carboxy terminus of adeno-associated virus 2 capsid proteins affect viral infectivity: lack of an RGD integrin-binding motif. J Gen Virol 75:3385–3392

    Article  PubMed  CAS  Google Scholar 

  • Samulski R, Sally M, Muzyczka N (1999) Adeno-associated viral vectors. In: Friedmann T (ed) The development of human gene therapy. Cold Spring Harbor Laboratory Press, New York, pp 131–172

    Google Scholar 

  • Sarkar R, Xiao W, Kazazian HH Jr et al (2003) A single adenoassociated virus (AAV)- murine factor FVIII. J Thromb Haemost 1:220–226

    Article  PubMed  CAS  Google Scholar 

  • Sarkar R, Tetreault R, Gao G et al (2004) Total correction of hemophilia A mice with canine FVIII using an AAV 8 serotype. Blood 103:1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Scallan CD, Liu T, Parker AE et al (2003) Phenotypic correction of a mouse model of hemophilia A using AAV2 vectors encoding the heavy and light chains of FVIII. Blood 102:3919–3926

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Voutetakis A, Afione S et al (2008) Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acid- and heparan sulfate proteoglycan-independent transduction activity. J Virol 82:1399–1406

    Article  PubMed  CAS  Google Scholar 

  • Smith RH, Yang L, Kotin RM et al (2008) Chromatography-based purification of adeno-associated virus. Methods Mol Biol 434:37–54

    Article  PubMed  CAS  Google Scholar 

  • Srivastava A (2008) Adeno-associated virus-mediated gene transfer. J Cell Biochem May 23

  • Vandendriessche T, Thorrez L, Acosta-Sanchez A et al (2007) Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs. lentiviral vectors for hemophilia B gene therapy. J Thromb Haemost 5:16–24

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Herzog RW (2005) AAV-mediated gene transfer for treatment of hemophilia. Curr Gene Ther 5:349–360

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Chirmule N, Berta SC et al (1999) Gene therapy vectors based on adeno-associated virus type 1. J Virol 73:3994–4003

    PubMed  CAS  Google Scholar 

  • Xie Q, Bu W, Bhatia S et al (2002) The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci 99:10405–10410

    Article  PubMed  CAS  Google Scholar 

  • Ye C, Pintel DJ (2008) The transcription strategy of bovine adeno-associated virus (B-AAV) combines features of both adeno-associated virus type 2 (AAV2) and type 5 (AAV5). Virology 370:392–402

    Article  PubMed  CAS  Google Scholar 

  • Zincarelli C, Soltys S, Rengo G et al (2008) Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16:1073–1080

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Fund of Guangdong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Youjin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youjin, S., Jun, Y. The treatment of hemophilia A: from protein replacement to AAV-mediated gene therapy. Biotechnol Lett 31, 321–328 (2009). https://doi.org/10.1007/s10529-008-9869-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9869-0

Keywords

Navigation