Skip to main content
Log in

Current status, strategies, and potential for the metabolic engineering of heterologous polyketides in Escherichia coli

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Heterologous natural product biosynthesis has emerged as a strategy to produce medicinal compounds that pose challenges to conventional production routes. Polyketide compounds, an important class of natural products with wide-ranging therapeutic value, have been heterologously produced through Escherichia coli, presenting new opportunities to realize the medicinal potential of polyketide natural products. However, current production levels are often suboptimal when compared to native strain producers or heterologous theoretical yields. This problem provides an excellent opportunity to apply and further develop current metabolic engineering tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267

    Article  PubMed  CAS  Google Scholar 

  • Alper H, Fischer C, Nevoigt E et al (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA 102:12678–12683

    Article  PubMed  CAS  Google Scholar 

  • Alper H, Moxley J, Nevoigt E et al (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  PubMed  CAS  Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  PubMed  CAS  Google Scholar 

  • Borodina I, Krabben P, Nielsen J (2005) Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res 15:820–829

    Article  PubMed  CAS  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Cane DE, Walsh CT, Khosla C (1998) Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282:63–68

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Duarte NC, Herrgard MJ, Palsson BØ (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309

    Article  PubMed  CAS  Google Scholar 

  • Edwards JS, Ibarra RU, Palsson BØ (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130

    Article  PubMed  CAS  Google Scholar 

  • Edwards JS, Covert M, Palsson B (2002) Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol 4:133–140

    Article  PubMed  Google Scholar 

  • Eppelmann K, Doekel S, Marahiel MA (2001) Engineered biosynthesis of the peptide antibiotic bacitracin in the surrogate host Bacillus subtilis. J Biol Chem 276:34824–34831

    Article  PubMed  CAS  Google Scholar 

  • Feist AM, Henry CS, Reed JL et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1,260 ORFs and thermodynamic information. Mol Sys Biol 3:121

    Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  PubMed  CAS  Google Scholar 

  • Fong R, Hu Z, Hutchinson CR et al (2007) Characterization of a large, stable, high-copy-number Streptomyces plasmid that requires stability and transfer functions for heterologous polyketide overproduction. Appl Environ Microbiol 73:1296–1307

    Article  PubMed  CAS  Google Scholar 

  • González-Lergier J, Broadbelt LJ, Hatzimanikatis V (2006) Analysis of the maximum theoretical yield for the synthesis of erythromycin precursors in Escherichia coli. Biotechnol Bioeng 95:638–644

    Article  PubMed  CAS  Google Scholar 

  • Kao CM, Katz L, Khosla C (1994) Engineered biosynthesis of a complete macrolactone in a heterologous host. Science 265:509–512

    Article  PubMed  CAS  Google Scholar 

  • Kern A, Tilley E, Hunter IS et al (2007) Engineering primary metabolic pathways of industrial micro-organisms. J Biotechnol 129:6–29

    Article  PubMed  CAS  Google Scholar 

  • Khosla C, Tang Y, Chen AY et al (2007) Structure and mechanism of the 6-deoxyerythronolide B synthase. Annu Rev Biochem 76:195–221

    Article  PubMed  CAS  Google Scholar 

  • Koffas M, Stephanopoulos G (2005) Strain improvement by metabolic engineering: lysine production as a case study for systems biology. Curr Opin Biotechnol 16:361–366

    Article  PubMed  CAS  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  PubMed  CAS  Google Scholar 

  • Lau J, Tran C, Licari P et al (2004) Development of a high cell-density fed-batch bioprocess for the heterologous production of 6-deoxyerythronolide B in Escherichia coli. J Biotechnol 110:95–103

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Khosla C (2007) Bioassay-guided evolution of glycosylated macrolide antibiotics in Escherichia coli. PLoS Biol 5:e45

    Article  PubMed  CAS  Google Scholar 

  • Minas W, Brunker P, Kallio PT et al (1998) Improved erythromycin production in a genetically engineered industrial strain of Saccharopolyspora erythraea. Biotechnol Prog 14:561–566

    Article  PubMed  CAS  Google Scholar 

  • Mutka SC, Bondi SM, Carney JR et al (2006a) Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 6:40–47

    Article  PubMed  CAS  Google Scholar 

  • Mutka SC, Carney JR, Liu Y et al (2006b) Heterologous production of epothilone C and D in Escherichia coli. Biochemistry 45:1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J (2003) It is all about metabolic fluxes. J Bacteriol 185:7031–7035

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J, Oliver S (2005) The next wave in metabolome analysis. Trends Biotechnol 23:544–546

    Article  PubMed  CAS  Google Scholar 

  • Oh YK, Palsson BØ, Park SM et al (2007) Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 282:28791–28799

    Article  PubMed  CAS  Google Scholar 

  • Peirú S, Menzella HG, Rodríguez E et al (2005) Production of the potent antibacterial polyketide erythromycin C in Escherichia coli. Appl Environ Microbiol 71:2539–2547

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer BA, Khosla C (2001) Biosynthesis of polyketides in heterologous hosts. Microbiol Mol Biol Rev 65:106–118

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer BA, Admiraal SJ, Gramajo H et al (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790–1792

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer B, Hu Z, Licari P et al (2002) Process and metabolic strategies for improved production of Escherichia coli-derived 6-deoxyerythronolide B. Appl Environ Microbiol 68:3287–3292

    Article  PubMed  CAS  Google Scholar 

  • Pitera DJ, Paddon CJ, Newman JD et al (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207

    Article  PubMed  CAS  Google Scholar 

  • Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897

    Article  PubMed  CAS  Google Scholar 

  • Reed JL, Palsson BØ (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol 185:2692–2699

    Article  PubMed  CAS  Google Scholar 

  • Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Article  PubMed  CAS  Google Scholar 

  • Schumann W (2007) Production of recombinant proteins in Bacillus subtilis. Adv Appl Microbiol 62:137–189

    Article  PubMed  CAS  Google Scholar 

  • Spencer JF, Ragout de Spencer AL, Laluce C (2002) Non-conventional yeasts. Appl Microbiol Biotechnol 58:147–156

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11

    Article  PubMed  CAS  Google Scholar 

  • Suthers PF, Burgard AP, Dasika MS et al (2007) Metabolic flux elucidation for large-scale models using (13)C labeled isotopes. Metab Eng 9:387–405

    Article  PubMed  CAS  Google Scholar 

  • Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25:132–137

    Article  PubMed  CAS  Google Scholar 

  • Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41:633–646

    Article  CAS  PubMed  Google Scholar 

  • van der Werf MJ, Overkamp KM, Muilwijk B et al (2007) Microbial metabolomics: toward a platform with full metabolome coverage. Anal Biochem 370:17–25

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Pfeifer BA (2008) 6-Deoxyerythronolide B production through chromosomal localization of the deoxyerythronolide B synthase genes in E. coli. Metab Eng 10:33–38

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Boghigian BA, Pfeifer BA (2007a) Improving heterologous polyketide production in Escherichia coli by overexpression of an S-adenosylmethionine synthetase gene. Appl Microbiol Biotechnol 77:367–373

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wang Y, Chu J et al (2007b) Improved production of erythromycin A by expression of a heterologous gene encoding S-adenosylmethionine synthetase. Appl Microbiol Biotechnol 75:837–842

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Rude MA, Walsh CT et al (2003) Engineered biosynthesis of an ansamycin polyketide precursor in Escherichia coli. Proc Natl Acad Sci USA 100:9774–9778

    Article  PubMed  CAS  Google Scholar 

  • Wenzel SC, Gross F, Zhang Y et al (2005) Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via red/ET recombineering. Chem Biol 12:349–356

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Wang Y, Pfeifer BA (2008) Bacterial hosts for natural product production. Mol Pharm (in press). doi:10.1021/mp7001329

Download references

Acknowledgements

BAB would like to thank Prof. Kyongbum Lee, Dr. Yong Wang, and Haoran Zhang for their continued insightful discussions. BAB would also like to thank the Tufts University BREEM Program (started through National Institutes of Health #R25 GM073177-01) and the Tufts Faculty Research Awards Committee for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaine A. Pfeifer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boghigian, B.A., Pfeifer, B.A. Current status, strategies, and potential for the metabolic engineering of heterologous polyketides in Escherichia coli . Biotechnol Lett 30, 1323–1330 (2008). https://doi.org/10.1007/s10529-008-9689-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9689-2

Keywords

Navigation