Skip to main content
Log in

Liposome/DNA systems: correlation between association, hydrophobicity and cell viability

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Small unilamellar vesicles associated with plasmid DNA showed maximum association efficiency for a cationic mixture of egg phosphatidylcholine (EPC):1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE):di-1,2-dioleoyl-3-trimethyl ammonium propane (DOTAP) (16:8:1 molar ratio) [65%], followed by neutral lipids EPC:1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE):cholesterol (Chol) (2:2:1 molar ratio) [30%], and a polymerized formulation 1,2-bis(10,12-tricosadiynoyl)sn-glycero-3-phosphocholine (DC8,9PC):DMPE:Chol (2:2:1 molar ratio) [11%]. The hydrophobicity factor (HF) for these formulations followed the trend DC8,9PC:DMPE:CHOL < EPC:DMPE:Chol < EPC:DOPE DOTAP, and DNA association did not alter this trend. Results suggest that the higher the HF value, the more fluid the membrane and the higher the efficiency of DNA association. On the other hand, no differences were observed in cell toxicity with lipids up to 1 mg/ml in VERO cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahl PL, Price R, Smuda J, Gaber BP, Singh A (1990) Insertion of bacteriorhodopsin into polymerized diacetylenic phosphatidylcholine bilayers. Biochim Biophys Acta 1028:141–153

    Article  PubMed  CAS  Google Scholar 

  • Albariño CG, Romanowski V (1994) Phenol extraction revisited: a rapid method for the isolation and preservation of human genomic DNA from whole blood. Mol Cell Probes 5:423–427

    Article  Google Scholar 

  • Alonso-Romanowski S, Chiaramoni NS, Lioy VS, Gargini RA, Viera LI, Taira MC (2003) Characterization of diacetylenic liposomes as carriers for oral vaccines. Chem Phys Lipids 122:191–203

    Article  PubMed  CAS  Google Scholar 

  • Bakaltcheva I, Williams WP, Schmitt JM, Hincha DK (1994) The solute permeability of thylakoid membranes is reduced by low concentrations of trehalose as a co-solute. Biochim Biophys Acta 3:38–44

    Google Scholar 

  • Bangham AD (1972) Model membranes. Chem Phys Lipids 4:386–392

    Article  Google Scholar 

  • Bordi F, Cametti C, De Luca F, Gili T, Gaudino D, Sennato S (2003) Charged lipid monolayers at the air-solution interface: coupling to polyelectrolytes. Colloids Surf B Biointerfaces 29:149–157

    Article  CAS  Google Scholar 

  • Borgatti M, Breda L, Cortesi R, Nastruzzi C, Romanelli A, Saviano M, Bianchi N, Mischiati C, Pedone C, Gambari R (2002) Cationic liposomes as delivery systems for double-stranded PNA-DNA chimeras exhibiting decoy activity against NF-κB transcription factors. Biochem Pharmacol 64:609–616

    Article  PubMed  CAS  Google Scholar 

  • Chiaramoni NS, Speroni L, Taira MC, Alonso Romanowski S (2003) Lipid-DNA formulations: an approach to biodistribution assays. Biocell 27:86–86

    Google Scholar 

  • Even-Chem S, Barenholz Y (2000) DOTAP cationic liposomes prefer relaxed over supercoiled plasmids. Biochim Biophys Acta 1509:176–188

    Article  Google Scholar 

  • Fabani MM, Gargini R, Taira MC, Iacono R, Alonso-Romanowski S (2002) Study of in vitro stability of liposomes and in vivo antibody response to antigen associated with liposomes containing GM1 after oral and subcutaneous immunization. J Liposome Res 12:13–27

    Article  PubMed  CAS  Google Scholar 

  • Felgner PL, Gadek TR, Holm M, Roman R, Chan HS, Wenz M, Northrop JP, Ringold M, Danilesen H (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis G, Bacon A, Caparros-Wanderley W, McCormack B (2002) A role for liposomes in genetic vaccination. Vaccine 20:B1–B9

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis G, Saffie R, Hart SL (1996) High yield incorporation of plasmid DNA within liposomes: effect on DNA integrity and transfection efficiency. J Drug Target 3:469–475

    PubMed  CAS  Google Scholar 

  • Jenkins N (1999) Cell evaluation protocols. In: Jenkins N (ed) Animal cell biotechnology methods and protocols, vol 8. Humana Press Totowa, New Jersey, USA, pp 131–144

    Chapter  Google Scholar 

  • Lelkes PI, Miller IR (1980) Perturbations of membrane structure by optical probes: II. Differential scanning calorimetry of dipalmitoyllecithin and its analogs interacting with Merocyanine 540. J Membr Biol 31:1–15

    Google Scholar 

  • Mirska D, Schirmer K, Funari SS, Langner A, Dobner B, Brezesinski G (2005) Biophysical and biochemical properties of a binary lipid mixture for DNA transfection. Colloids Surf B Biointerfaces 40:51–59

    Article  PubMed  CAS  Google Scholar 

  • Pedroso de Lima MC, Neves S, Filipe A, Duzgunes N, Simoes S (2003) Cationic liposomes for gene delivery: from biophysics to biological applications. Curr Med Chem 14:1221–1231

    Article  Google Scholar 

  • Perrie Y, Gregoriadis G (2000) Liposome-entrapped plasmid DNA: characterisation studies. Biochim Biophys Acta 1475:125–132

    PubMed  CAS  Google Scholar 

  • R.R.C. New (1990) Ficoll flotation method for DNA. In: Rickwood D (ed) Liposomes: a practical approach. IRL Press, UK, pp 95–96

  • Sambrook J, Fritsch EF, Maniatis T (1989) Quantitation of DNA ns RNA. In: Nolan C (ed) Molecular cloning: a laboratory manual, vol 3, 2nd edn. Cold Spring Harbor Laboratory Press, pp E5–E7

  • Savva M, Aljaberi A, Feigand J, Beer Stolz D (2005) Correlation of the physicochemical properties of symmetric 1,3-dialkoylamidopropane-based cationic lipids containing single primary and tertiary amine polar head groups with in vitro transfection activity. Colloids Surf B Biointerfaces 43:43–56

    Article  PubMed  CAS  Google Scholar 

  • Viera LI, Senisterra GA, Disalvo EA (1996) Changes in the optical properties of liposome dispersions in relation to the interlamellar distance and solute interaction. Chem Phys Lipids 17:45–54

    Article  Google Scholar 

Download references

Acknowledgments

We thank Lic. Silvina Mangano, Lic. Ricardo Gargini and Lic. Marcelo Argüelles for their technical assistance in VP7 plasmid DNA obtention and helpful discussions. This work was supported by grants from CIC (Comisión de Investigaciones Científicas), CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), and the Universidad Nacional de Quilmes (Buenos Aires, Argentina). Silvia del V. Alonso is a Scientific Research Career member of the CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia del V. Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiaramoni, N.S., Speroni, L., Taira, M.C. et al. Liposome/DNA systems: correlation between association, hydrophobicity and cell viability. Biotechnol Lett 29, 1637–1644 (2007). https://doi.org/10.1007/s10529-007-9454-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9454-y

Keywords

Navigation