Skip to main content
Log in

Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A gene-shuffling technique was identified, optimized and used to generate diverse libraries of recombinant [FeFe]-hydrogenases. Six native [FeFe]-hydrogenase genes from species of Clostridia were first cloned and separately expressed in Escherichia coli concomitantly with the assembly proteins required for [FeFe]-hydrogenase maturation. All enzymes, with the exception of C. thermocellum HydA, exhibited significant activity when expressed. Single-stranded DNA fragments from genes encoding the two most active [FeFe]-hydrogenases were used to optimize a gene-shuffling protocol and generate recombinant enzyme libraries. Random sampling demonstrates that several shuffled products are active. This represents the first successful application of gene-shuffling using hydrogenases. Moreover, we demonstrate that a single set of [FeFe]-hydrogenase maturation proteins is sufficient for the heterologous assembly of the bioinorganic active site of several native and shuffled [FeFe]-hydrogenases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams MW (1990) The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020:115–145

    Article  PubMed  CAS  Google Scholar 

  • Armstrong F (2004) Hydrogenases: active site puzzles and progress. Curr Opin Chem Biol 8:133–140

    Article  PubMed  CAS  Google Scholar 

  • Bock A, King PW, Blokesch M, Posewitz MC (2006) Hydrogenase maturation. Adv Microb Phys 51:1–71

    Google Scholar 

  • Boichenko VA, Greenbaum E, Seibert M (2004) Hydrogen production by photosynthetic microorganisms. In: Archer MD, Barber J (eds) Photoconversion of solar energy, molecular to global photosynthesis, vol 2. Imperial College Press London, pp 397–451

  • Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SP, Friedrich B (2005) [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10:181–196

    Article  PubMed  CAS  Google Scholar 

  • Casalot L, Rousset M (2001) Maturation of the [NiFe] hydrogenases. Trends Microbiol 9:228–237

    Article  PubMed  CAS  Google Scholar 

  • Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Bertain S, Cho HJ, Duck N, Wong J, Liu D, Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304:1151–1154

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Lemon BJ, Huang S, Swartz DJ, Peters JW, Bagley KA (2002) Infrared studies of the CO-inhibited form of the Fe-only hydrogenase from Clostridium pasteurianum I: examination of its light sensitivity at cryogenic temperatures. Biochemistry 41:2036–2043

    Article  PubMed  CAS  Google Scholar 

  • Cho CM, Mulchandani A, Chen W (2004) Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol 70:4681–4685

    Article  PubMed  CAS  Google Scholar 

  • Cohen J, Kim K, Posewitz M, Ghirardi ML, Schulten K, Seibert M, King P (2005) Molecular dynamics and experimental investigation of H2 and O2 diffusion in [Fe]-hydrogenase. Biochem Soc Trans 33:80–82

    Article  PubMed  CAS  Google Scholar 

  • Cournac L, Guedeney G, Peltier G, Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186:1737–1746

    Article  PubMed  CAS  Google Scholar 

  • de Lacey A, Fernandez V, Rousset M (2005) Native and mutant nickel-iron hydrogenases: Unravelling structure and function. Coord Chem Rev 249:1596–1608

    Article  CAS  Google Scholar 

  • Ghirardi ML, King PW, Posewitz MC, Maness PC, Fedorov A, Kim K, Cohen J, Schulten K, Seibert M (2005) Approaches to developing biological H2-photoproducing organisms and processes. Biochem Soc Trans 33:70–72

    Article  PubMed  CAS  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511

    Article  PubMed  CAS  Google Scholar 

  • Girbal L, von Abendroth G, Winkler M, Benton PM, Meynial-Salles I, Croux C, Peters JW, Happe T, Soucaille P (2005) Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities. Appl Environ Microbiol 71:2777–2781

    Article  PubMed  CAS  Google Scholar 

  • Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52:21–29

    PubMed  CAS  Google Scholar 

  • Hao J, Berry A (2004) A thermostable variant of fructose bisphosphate aldolase constructed by directed evolution also shows increased stability in organic solvents. Protein Eng Des Sel 17:689–697

    Article  PubMed  CAS  Google Scholar 

  • Happe RP, Roseboom W, Pierik AJ, Albracht SP, Bagley KA (1997) Biological activation of hydrogen. Nature 385:126

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Hemschemeier A, Winkler M, Kaminski A (2002) Hydrogenases in green algae: do they save the algae’s life and solve our energy problems? Trends Plant Sci 7:246–250

    Article  PubMed  CAS  Google Scholar 

  • Hawkes F, Dinsdale R, Hawkes D, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hyd Energy 27:1339–1347

    Article  CAS  Google Scholar 

  • Higuchi Y, Yagi T, Yasuoka N (1997) Unusual ligand structure in Ni–Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure 5:1671–1680

    Article  PubMed  CAS  Google Scholar 

  • Johannes TW, Zhao H (2006) Directed evolution of enzymes and biosynthetic pathways. Curr Opin Microbiol 9:1–7

    Article  CAS  Google Scholar 

  • King PW, Posewitz MC, Ghirardi ML, Seibert M (2006) Functional studies of [FeFe]-hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188:2163–2172

    Article  PubMed  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177

    Article  PubMed  CAS  Google Scholar 

  • Lemon BJ, Peters JW (1999) Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 38:12969–12973

    Article  PubMed  CAS  Google Scholar 

  • Lenz O, Gleiche A, Strack A, Friedrich B (2005) Requirements for heterologous production of a complex metalloenzyme: the membrane-bound [NiFe] hydrogenase. J Bacteriol 187:6590–6595

    Article  PubMed  CAS  Google Scholar 

  • Macaskie LE, Baxter-Plant VS, Creamer NJ, Humphries AC, Mikheenko IP, Mikheenko PM, Penfold DW, Yong P (2005) Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy. Biochem Soc Trans 33:76–79

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiology 127:740–748

    Article  PubMed  CAS  Google Scholar 

  • Mura GM, Pedroni P, Pratesi C, Galli G, Serbolisca L, Grandi G (1996) The [Ni–Fe] hydrogenase from the thermophilic bacterium Acetomicrobium flavidum. Microbiology 142:829–836

    Article  PubMed  CAS  Google Scholar 

  • Ni J, Takehara M, Watanabe H (2005) Heterologous overexpression of a mutant termite cellulase gene in Escherichia coli by DNA shuffling of four orthologous parental cDNAs. Biosci Biotechnol Biochem 69:1711–1720

    Article  PubMed  CAS  Google Scholar 

  • Nicolet Y, de Lacey AL, Vernede X, Fernandez VM, Hatchikian EC, Fontecilla-Camps JC (2001) Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc 123:1596–1601

    Article  PubMed  CAS  Google Scholar 

  • Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure Fold Des 7:13–23

    Article  PubMed  CAS  Google Scholar 

  • Penfold DW, Macaskie LE (2004) Production of H2 from sucrose by Escherichia coli strains carrying the pUR400 plasmid, which encodes invertase activity. Biotechnol Lett 26:1879–1883

    Article  PubMed  CAS  Google Scholar 

  • Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858

    Article  PubMed  CAS  Google Scholar 

  • Peters JW, Szilagyi RK, Naumov A, Douglas T (2006) A radical solution for the biosynthesis of the H-cluster of hydrogenase. FEBS Lett 580:363–367

    Article  PubMed  CAS  Google Scholar 

  • Pierik AJ, Hulstein M, Hagen WR, Albracht SP (1998) A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. Eur J Biochem 258:572–578

    Article  PubMed  CAS  Google Scholar 

  • Pierik AJ, Roseboom W, Happe RP, Bagley KA, Albracht SP (1999) Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe(CN)2CO, Biology’s way to activate H2. J Biol Chem 274:3331–3337

    Article  PubMed  CAS  Google Scholar 

  • Posewitz MC, King PW, Smolinski SL, Smith RD, Ginley AR, Ghirardi ML, Seibert M (2005) Identification of genes required for hydrogenase activity in Chlamydomonas reinhardtii. Biochem Soc Trans 33:102–104

    Article  PubMed  CAS  Google Scholar 

  • Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720

    Article  PubMed  CAS  Google Scholar 

  • Reissmann S, Hochleitner E, Wang H, Paschos A, Lottspeich F, Glass RS, Bock A (2003) Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands. Science 299:1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Roodveldt C, Aharoni A, Tawfik DS (2005) Directed evolution of proteins for heterologous expression and stability. Curr Opin Struct Biol 15:50–56

    Article  PubMed  CAS  Google Scholar 

  • Schutz K, Happe T, Troshina O, Lindblad P, Leitao E, Oliveira P, Tamagnini P (2004) Cyanobacterial H2 production – a comparative analysis. Planta 218:350–359

    Article  PubMed  CAS  Google Scholar 

  • Spear JR, Walker JJ, McCollom TM, Pace NR (2005) Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci U S A 102:2555–2560

    Article  PubMed  CAS  Google Scholar 

  • Stemmer WP (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91:10747–10751

    Article  PubMed  CAS  Google Scholar 

  • Suen WC, Zhang N, Xiao L, Madison V, Zaks A (2004) Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling. Protein Eng Des Sel 17:133–140

    Article  PubMed  CAS  Google Scholar 

  • van den Berg S, Lofdahl P, Hard T, Berglund H (2006) Improved solubility of TEV protease by directed evolution. J Biotech 121:291–298

    Article  CAS  Google Scholar 

  • Vardar G, Ryu K, Wood TK (2005) Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for oxidizing nitrobenzene to 3-nitrocatechol, 4-nitrocatechol, and nitrohydroquinone. J Biotechnol 115:145–156

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    PubMed  CAS  Google Scholar 

  • Vincent KA, Cracknell JA, Lenz O, Zebger I, Friedrich B, Armstrong FA (2005) Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels. Proc Natl Acad Sci U S A 102:16951–16954

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587

    Article  PubMed  CAS  Google Scholar 

  • Zha W, Zhu T, Zhao H (2003) Family shuffling with single-stranded DNA. In: Georgiou G, Arnold FH (eds) Methods in molecular biology, directed evolution library creation: methods and protocols, vol 231. Humana Press Inc, Totowa, NJ, pp 101–106

Download references

Acknowledgements

We would like to thank the entire NREL and CSM biohydrogen teams for insightful discussions regarding this research. Moreover, we acknowledge the insights and technical suggestions provided by the Air Force Office of Scientific Research BioSolar H2 research team led by G. Charles Dismukes at Princeton University. We would also like to thank John Spear (CSM) for previewing this manuscript and offering editorial suggestions.

This work was supported by U.S. Air Force Office of Scientific Research MURI award FA9550-05-1-0365 (MCP), the National Science Foundation award 0328187 (MCP, DA) and the Division of Energy Biosciences, Office of Science, U.S. Department of Energy (MLG, MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. Posewitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, L.E., Meuser, J.E., Plummer, S. et al. Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries. Biotechnol Lett 29, 421–430 (2007). https://doi.org/10.1007/s10529-006-9254-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9254-9

Keywords

Navigation