Skip to main content
Log in

Changes in primary metabolism leading to citric acid overflow in Aspergillus niger

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

For citric acid-accumulating Aspergillus niger cells, the enhancement of anaplerotic reactions replenishing tricarboxylic acid cycle intermediates predisposes the cells to form the product. However, there is no increased citrate level in germinating spores and a complex sequence of developmental events is needed to change the metabolism in a way that leads to an increased level of tricarboxylic acid cycle intermediates in mycelia. A review of physiological events that cause such intracellular conditions, with the special emphasis on the discussion of hexose transport into the cells and regulation of primary metabolism, predominantly of glycolytic flux during the process, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arisan-Atac I, Wolschek MF, Kubicek CP (1996) Trehalose 6-phosphate synthase A affects citrate accumulation by Aspergillus niger under conditions of high glycolytic flux. FEMS Microbiol Lett 140:77–83

    Article  PubMed  CAS  Google Scholar 

  • Arts E, Kubicek CP, Röhr M (1987) Regulation of phosphofructokinase from Aspergillus niger: effect of fructose 2,6-bisphosphate on the action of citrate, ammonium ions and AMP. Microbiology 133:1195–1199

    Article  CAS  Google Scholar 

  • de Graaff L, van den Broeck H, Visser J (1992) Isolation and characterization of the Aspergillus niger pyruvate kinase gene. Curr Genet 22:21–27

    Article  PubMed  Google Scholar 

  • d’Enfert C, Bonini BM, Zapella PD et al (1999) Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol Microbiol 32:471–483

    Article  PubMed  CAS  Google Scholar 

  • David H, Akesson M, Nielsen J (2003) Reconstruction of the central carbon metabolism of Aspergillus niger. Eur J Biochem 270:4243–4253

    Article  PubMed  CAS  Google Scholar 

  • Dumbrava VA, Pall ML (1987) Regulation of fructose 2,6-bisphosphate levels in Neurospora crassa. Biochim Biophys Acta 925:210–217

    PubMed  CAS  Google Scholar 

  • Fillinger S, Chaveroche MK, van Dijck P et al (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147:1851–1862

    PubMed  CAS  Google Scholar 

  • Forment JV, Flipphi M, Ramon D et al (2006) Identification of the mstE gene encoding a glucose-inducible, low affinity glucose transporter in Aspergillus nidulans. J Biol Chem 281:8339–8346

    Article  PubMed  CAS  Google Scholar 

  • Francois J, Van Schaftingen E, Hers HG (1984) The mechanism by which glucose increases fructose 2,6-bisphosphate concentration in Saccharomyces cerevisiae. A cyclic-AMP-dependent activation of phosphofructokinase 2. Eur J Biochem 145:187–193

    Article  PubMed  CAS  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Gradišnik-Grapulin M, Legiša M (1997) A spontaneous change in the intracellular cyclic AMP level in Aspergillus niger is influenced by the sucrose concentration in the medium and by light. Appl Environ Microbiol 63:2844–2849

    PubMed  Google Scholar 

  • Habison A, Kubicek CP, Röhr M (1983) Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger. Biochem J 209:669–676

    PubMed  CAS  Google Scholar 

  • Hesse SJ, Ruijter GJG, Dijkema C et al (2002) Intracellular pH homeostasis in the filamentous fungus Aspergillus niger. Eur J Biochem 269:3485–3494

    Article  PubMed  CAS  Google Scholar 

  • Hondmann DHA, Visser J (1994) Carbon metabolism. In: Martinelli SD, Kinghorn JR (eds) Aspergillus: 50 years on, progress in industrial microbiology, vol 29. Elsevier, Amsterdam, pp59–139

    Google Scholar 

  • Jernejc K, Legiša M (2004) A drop of intracellular pH stimulates citric acid accumulation by some strains of Aspergillus niger. J Biotechnol 112:289–297

    Article  PubMed  CAS  Google Scholar 

  • Karaffa L, Kubicek CP (2003) Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl Microbiol Biotechnol 61:189–196

    PubMed  CAS  Google Scholar 

  • Kubicek CP, Röhr M (1978) The role of the tricarboxylic acid cycle in citric acid accumulation by Aspergillus niger. Eur J Appl Microbiol Biotechnol 5:263–271

    Article  CAS  Google Scholar 

  • Kubicek-Pranz EM, Mozelt M, Röhr M et al (1990) Changes in the concentration of fructose 2,6-bisphosphate in Aspergillus niger during stimulation of acidogenesis by elevated sucrose concentration. Biochim Biophys Acta 1033:250–255

    PubMed  CAS  Google Scholar 

  • Legiša M, Benčina M (1994) Evidence for the activation of 6-phosphofructo-1-kinase by cAMP-dependent protein kinase in Aspergillus niger. FEMS Microbiol Lett 118:327–333

    Article  PubMed  Google Scholar 

  • Legiša M, Cimerman A, Sterle M (1981) Germination of Aspergillus niger in a high citric acid yielding medium. FEMS Microbiol Lett 11:149–152

    Article  Google Scholar 

  • Legiša M, Kidrič J (1989) Initiation of citric acid accumulation in the early stages of Aspergillus niger growth. Appl Microbiol Biotechnol 31:453–457

    Article  Google Scholar 

  • Legiša M, Mattey M (1986a) Glycerol as an initiator of citric acid accumulation in Aspergillus niger. Enzyme Microb Technol 8:258–259

    Article  Google Scholar 

  • Legiša M, Mattey M (1986b) Glycerol synthesis by Aspergillus niger under citric acid accumulating conditions. Enzyme Microb Technol 8:607–609

    Article  Google Scholar 

  • Ma H, Kubicek CP, Röhr M (1985) Metabolic effects of manganese deficiency in Aspergillus niger: evidence for increased protein degradation. Arch Microbiol 141:266–268

    Article  PubMed  CAS  Google Scholar 

  • Machida M, Asai K, Sano M et al (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    Article  PubMed  Google Scholar 

  • Meixner-Monori B, Kubicek CP, Röhr M (1984) Pyruvate kinase from Aspergillus niger: a regulatory enzyme in glycolysis? Can J Microbiol 30:16–22

    Article  PubMed  CAS  Google Scholar 

  • Mesojednik S, Legiša M (2005) Post-translational modification of 6-phosphofructo-1-kinase in Aspergillus niger. Appl Environ Microbiol 71:1425–1432

    Article  PubMed  CAS  Google Scholar 

  • Mlakar T, Legiša M (2006) Citrate inhibition resistant from of 6-phosphofructo-1-kinase from Aspergillus niger. Appl Environ Microbiol 72:4515–4521

    Article  PubMed  CAS  Google Scholar 

  • Nierman WC, Pain A, Anderson MJ et al (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156

    Article  PubMed  CAS  Google Scholar 

  • Panneman H, Ruijter GJG, van den Broeck HC et al (1998) Cloning and biochemical characterisation of Aspergillus niger hexokinase—the enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate. Eur J Biochem 258:223–232

    Article  PubMed  CAS  Google Scholar 

  • Panneman H, Ruijter GJG, van den Broeck HC et al (1996) Cloning and biochemical characterisation of an Aspergillus niger glucokinase. Evidence for the presence of separate glucokinase and hexokinase enzymes. Eur J Biochem 240:518–525

    Article  PubMed  CAS  Google Scholar 

  • Papagianni M, Wayman F, Mattey M (2005). Fate and role of ammonium ions during fermentation of citric acid by Aspergillus niger. Appl Environ Microbiol 71:7178–7186

    Article  PubMed  CAS  Google Scholar 

  • Peksel A, Torres NV, Liu J et al (2002) 13C-NMR analysis of glucose metabolism during citric acid production by Aspergillus niger. Appl Microbiol Biotechnol 58:157–163

    Article  PubMed  CAS  Google Scholar 

  • Poorman RA, Randolph A, Kemp RG et al (1984) Evolution of phosphofructokinase-gene duplication and creation of new effector sites. Nature 309:467–469

    Article  PubMed  CAS  Google Scholar 

  • Röhr M, Kubicek CP (1981) Regulatory aspects of citric acid fermentation by Aspergillus niger. Process Biochem 16:34–37

    Google Scholar 

  • Röhr M, Kubicek CP, Zehentgruber O et al (1987) Accumulation and partial re-consumption of polyols during citric acid fermentation by Aspergillus niger. Appl Microbiol Biotechnol 27:235–239

    Article  Google Scholar 

  • Ruijter GJG, Kubicek CP, Visser J (2002) Production of organic acids by fungi. In: Osiewacz HD (ed) The mycota X industrial applications, Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Ruijter GJG, Panneman H, Visser J (1997) Overexpression of phosphofructokinase and pyruvate kinase in citric acid-producing Aspergillus niger. Biochim Biophys Acta 1334:317–326

    PubMed  CAS  Google Scholar 

  • Schreferl G, Kubicek CP, Röhr M (1986) Inhibition of citric acid accumulation by manganese ions in Aspergillus niger mutants with reduced citrate control of phosphofructokinase. J Bacteriol 165:1019–1022

    PubMed  CAS  Google Scholar 

  • Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase. A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    Article  PubMed  CAS  Google Scholar 

  • Torres NV (1994a) Modelling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger: I. Model definition and stability of steady state. Biotechnol Bioeng 44:104–111

    Article  CAS  Google Scholar 

  • Torres NV (1994b) Modelling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger: II. Sensitivity analysis. Biotechnol Bioeng 44:112–118

    Article  CAS  Google Scholar 

  • Torres NV, Voit EO, Gonzalez-Alcon C (1996a) Optimization of nonlinear biotechnological process with linear programming: application to citric acid production by Aspergillus niger. Biotechnol Bioeng 49:247–258

    Article  CAS  Google Scholar 

  • Torres NV, Riol-Cimas JM, Wolschek M et al (1996b) Glucose transport by Aspergillus niger: the low affinity carrier is only formed during growth on high glucose concentrations. Appl Microbiol Biotechnol 44:790–794

    CAS  Google Scholar 

  • van den Hombergh JP, van de Vondervoort PJ, Fraissinet-Tachet L et al (1997) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15:256–263

    Article  PubMed  Google Scholar 

  • vanKuyk PA, Diderich JA, MacCabe AP et al (2004) Aspergillus niger mstA encodes a high-affinity sugar/H+ symporter which is regulated in response to extracellular pH. Biochem J 379:375–383

    Article  PubMed  CAS  Google Scholar 

  • Wayman FM, Mattey M (2000) Simple diffusion is the primary mechanism for glucose uptake during the production phase of the Aspergillus niger citric acid process. Biotechnol Bioeng 67:451–456

    Article  PubMed  CAS  Google Scholar 

  • Wolschek MF, Kubicek CP (1999) Biochemistry of citric acid accumulation by Aspergillus niger. In: Kristiansen B, Mattey M, Linden J (eds) Citric acid biotechnology, Taylor Francis Ltd., London

    Google Scholar 

  • Wrolstad RE, Shallenberger RS (1981) Free sugars and sorbitol in fruits—a complication from the literature. J Assoc Anal Chem 64:91–103

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matic Legiša.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legiša, M., Mattey, M. Changes in primary metabolism leading to citric acid overflow in Aspergillus niger . Biotechnol Lett 29, 181–190 (2007). https://doi.org/10.1007/s10529-006-9235-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9235-z

Keywords

Navigation