Skip to main content
Log in

Streptomycin production by Streptomyces griseus can be modulated by a mechanism not associated with change in the adpA component of the A-factor cascade

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

In Streptomyces coelicolor, AtrA is an activator of transcription of the actinorhodin cluster-situated regulator gene actII-ORF4. In previous work, we showed that S. coelicolor AtrA binds in vitro to the promoter of S. griseus strR, the streptomycin cluster-situated regulator. We show here that S. griseus carries a single close homologue of atrA and that expression of S. coelicolor AtrA in S. griseus causes a DNA binding-dependent reduction in streptomycin production and in the mRNA levels of strR and genes of streptomycin biosynthesis. However, there is no effect on the level of the mRNA of adpA, which is the only transcription factor that has so far been characterised for strR. The adpA gene is directly regulated by ArpA, the receptor protein for the γ-butyrolactone signalling molecule A-factor. Therefore, to our knowledge, our results provide the first in vivo evidence that A-factor-ArpA-AdpA-StrR regulatory cascade represents only part of the full complexity of regulation of streptomycin biosynthesis in S. griseus. The potential biotechnological application of our findings is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bibb M (1996) The regulation of antibiotic production in Streptomyces coelicolor A3 (2). Microbiology 142:1335–1344

    Article  CAS  PubMed  Google Scholar 

  • Bibb MJ, White J, Ward JM, Janssen GR (1994) The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 14:533–545

    Article  CAS  PubMed  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215

    Article  CAS  PubMed  Google Scholar 

  • Browning DF, Busby SJ (2004) The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65

    Article  CAS  PubMed  Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 2:14555–14561

    Article  CAS  Google Scholar 

  • Chater KF, Bibb MJ (1997) Regulation of bacterial antibiotic production. In: Kleinkauf H, Von Doehren H.v. (eds) Products of secondary metabolism. VCH Press, Germany

    Google Scholar 

  • Chater KF, Horinouchi S (2003) Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 48:9–15

    Article  CAS  PubMed  Google Scholar 

  • Combes P, Till R, Bee S, Smith MC (2002) The streptomyces genome contains multiple pseudo-attB sites for the (phi)C31-encoded site-specific recombination system. J Bacteriol 184:5746–5752

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39

    CAS  PubMed  Google Scholar 

  • Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52:455–463

    Article  CAS  PubMed  Google Scholar 

  • Embley TM, Stackebrandt E (1994) The molecular phylogeny and systematics of the actinomycetes. Ann Rev Microbiol 48:257–289

    CAS  Google Scholar 

  • Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229

    Article  CAS  PubMed  Google Scholar 

  • Gramajo HC, Takano E, Bibb MJ (1993) Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 7:837–845

    Article  CAS  PubMed  Google Scholar 

  • Hesketh A, Sun J, Bibb M (2001) Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Mol Microbiol 39:136–144

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Ryu YG, Kang SG, Kim SK, Saito N, Ochi K, Lee SH, Lee KJ (2004) Two relA/spoT homologous genes are involved in the morphological and physiological differentiation of Streptomyces clavuligerus. Microbiology 150:1485–1493

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA, Chater KF, Bibb MJ (1995) Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. Biotechnology 28:65–102

    CAS  PubMed  Google Scholar 

  • Horinouchi S, Kumada Y, Beppu T (1984) Unstable genetic determinant of A-factor biosynthesis in streptomycin-producing organisms: cloning and characterization. J Bacteriol 158:481–487

    CAS  PubMed  Google Scholar 

  • Horinouchi S (2002) A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Frontiers Biosci 7:2045–2057

    Google Scholar 

  • Kato JY, Suzuki A, Yamazaki H, Ohnishi Y, Horinouchi S (2002) Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J Bacteriol 184:6016–6025

    Article  CAS  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical streptomyces genetics. The John Innes Foundation, Norwich

  • Lloyd G, Landini P, Busby S (2001) Activation and repression of transcription initiation in bacteria. Essays Biochem 37:17–31

    CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Martin JF, Demain AL (1980) Control of antibiotic biosynthesis. Microbiol Rev 44:230–251

    CAS  PubMed  Google Scholar 

  • Ohnishi Y, Kameyama S, Onaka H, Horinouchi S (1999) The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 34:102–111

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi Y, Yamazaki H, Kato JY, Tomono A, Horinouchi S (2005) AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem 69:431–439

    Article  CAS  PubMed  Google Scholar 

  • Retzlaff L, Distler J (1995) The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites. Mol Microbiol 18:151–162

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-John T, Engels JW (1992) Promoter constructions for efficient secretion expression in Streptomyces lividans. Appl Microbiol Biotechnol 36:493–498

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Gramajo HC, Strauch E, Andres N, White J, Bibb MJ (1992) Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol 6:2797–2804

    Article  CAS  PubMed  Google Scholar 

  • Tilley E (2005) The metabolic engineering of Streptomyces sp. PhD Thesis. Department of Pharmaceutical Sciences, University of Strathclyde, Gaosgow, UK

    Google Scholar 

  • Tomono A, Tsai Y, Yamazaki H, Ohnishi Y, Horinouchi S (2005) Transcriptional control by A-factor of strR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus. J Bacteriol 187:5595–5604

    Article  CAS  PubMed  Google Scholar 

  • Uguru GC, Stephens KE, Stead JA, Towle JE, Baumberg S, McDowall KJ (2005) Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol Microbiol 58:131–150

    Article  CAS  PubMed  Google Scholar 

  • van Wezel GP, White J, Hoogvliet G, Bibb MJ (2000) Application of redD, the transcriptional activator gene of the undecylprodigiosin biosynthetic pathway, as a reporter for transcriptional activity in Streptomyces coelicolor A3(2) and Streptomyces lividans. J Mol Microbiol Biotech 2:551–556

    Google Scholar 

  • Vallins WJ, Baumberg S (1985) Cloning of a DNA fragment from Streptomyces griseus which directs streptomycin phosphotransferase activity. J Gen Microbiol 131:1657–1669

    CAS  PubMed  Google Scholar 

  • Vujaklija D, Horinouchi S, Beppu T (1993) Detection of an A-factor-responsive protein that binds to the upstream activation sequence of strR, a regulatory gene for streptomycin biosynthesis in Streptomyces griseus. J Bacteriol 175:2652–2661

    CAS  PubMed  Google Scholar 

  • Vujaklija D, Ueda K, Hong SK, Beppu T, Horinouchi S (1991) Identification of an A-factor-dependent promoter in the streptomycin biosynthetic gene cluster of Streptomyces griseus. Mol Gen Genet 229:119–128

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki H, Ohnishi Y, Horinouchi S (2000) An A-factor-dependent extracytoplasmic function sigma factor (sigma(AdsA)) that is essential for morphological development in Streptomyces griseus. J Bacteriol 182:4596–4605

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki H, Ohnishi Y, Horinouchi S (2003a) Transcriptional switch on of ssgA by A-factor, which is essential for spore septum formation in Streptomyces griseus. J Bacteriol 185:1273–1283

    Article  CAS  Google Scholar 

  • Yamazaki H, Takano Y, Ohnishi Y, Horinouchi S (2003b) AmfR, an essential gene for aerial mycelium formation, is a member of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. Mol Microbiol 50:1173–1187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by a grant from a BBSRC research grant (24/G18095) to S.B. and K.J.M. B.H was the recipient of a visiting scholarship from the State Scholarship Fund of China. Support is also acknowledged from the National Natural Science Foundation of China (30572274) and Beijing Municipal Science and Technology Commission to B.H. S.P was supported by funding provided by the Royal Thai Government Scholarship under the Teacher Professional Development Project (TPDP) jointly administered by the Ministry of Science and Technology, the Institute for Promotion of Teaching Science and Technology (IPST), and the Ministry of Education, Thailand. We thank Alice Morningstar for the gift of streptomycin-sensitive and -resistant E. coli strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. McDowall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, B., Phornphisutthimas, S., Tilley, E. et al. Streptomycin production by Streptomyces griseus can be modulated by a mechanism not associated with change in the adpA component of the A-factor cascade. Biotechnol Lett 29, 57–64 (2007). https://doi.org/10.1007/s10529-006-9216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9216-2

Keywords

Navigation