Skip to main content
Log in

A New Method for Mercury Removal

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A method is desibed for the removal of mercury from solution by using the off-gas produced from aerobic cultures of Klebsiella pneumoniae M426. Cells growing in Hg-supplemented medium produced a black precipitate containing mercury and sulphur. The ratio of Hg:S was determined as ~1:1 by analysis using proton-induced X-ray emission, suggesting precipitation of HgS within the culture. The outlet gases produced by a mercury-unsupplemented aerated culture were bubbled into an external chamber supplemented with up to 10 mg HgCl2/ml. A yellowish-white precipitate formed, corresponding to 99% removal of the mercury from solution within 120 min. Energy dispersive X-ray microanalysis showed that this metal precipitate consisted of mercury, carbon and sulphur. Formation of mercury carbonate was discounted since similar precipitation occurred at pH 2 and no oxygen was detected in the solid, which gave an X-ray powder pattern suggesting an amorphous material, with no evidence of HgS. Precipitation of mercury with a volatile organosulphur compound is suggested. Bio-precipitation of heavy metals by using culture off-gas is a useful approach because it can be used with concentrated or physiologically incompatible solutions. Since the metal precipitate is kept separate from the bacterial biomass, it can be managed independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H Aiking H Govers J. ‘t Riet Particlevan (1985) ArticleTitleDetoxification of mercury, cadmium and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture Appl. Environ. Microbiol. 50 1262–1267

    Google Scholar 

  • U Badar N Ahmed AJ Beswick P Pattanapipitpaisal L.E. Macaskie (2000) ArticleTitleReduction of chromate by microorganisms isolated from metal contaminated sites of Karachi, Pakistan Biotechnol. Lett. 22 829–836

    Google Scholar 

  • SW Bang DS Clark JD Keasling (2000) ArticleTitleEngineering hydrogen sulphide production and cadmium removal by expression of the thiosulfate reductase gene (phsABC) from Salmonella enterica serovar typhimurium in Escherichia coli Appl. Environ. Microbiol. 66 3939–3944 Occurrence Handle10.1128/AEM.66.9.3939-3944.2000 Occurrence Handle10966412

    Article  PubMed  Google Scholar 

  • T Barkay SM Miller AO Summers (2003) ArticleTitleBacterial mercury resistance from atoms to ecosystems FEMS Microbiol. Rev. 27 355–384 Occurrence Handle10.1016/S0168-6445(03)00046-9 Occurrence Handle12829275

    Article  PubMed  Google Scholar 

  • KM Bonthrone G Basnakova F Lin LE Macaskie (1996) ArticleTitleBioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism Nature Biotechnol. 14 635–638 Occurrence Handle10.1038/nbt0596-635

    Article  Google Scholar 

  • JS Chang J Hong QA Ogunseitan BH Olson (1993) ArticleTitleInteraction of mercuric ions with the bacterial growth medium and its effects on enzymatic reduction of mercury Biotechnol. Prog. 9 526–532 Occurrence Handle10.1021/bp00023a012

    Article  Google Scholar 

  • WJM Engels AC Alting MMTG Arntz H Gruppen AGJ Voragen G Smit S Visser ((2000)) ArticleTitlePartial purification and characterization of two aminotransferases from Lactococcus lactis subsp. cremoris B78 involved in the catabolism of methionine and branched chain amino acids Int. Dairy J 10 443–452 Occurrence Handle10.1016/S0958-6946(00)00068-6

    Article  Google Scholar 

  • Essa AMM (2004) Mercury resistance in enterobacteria; characterisation of determinants and a new bioprocess for mercury bioremediation. PhD Thesis, The University of Birmingham, UK

  • AMM Essa LE Macaskie NL Brown (2002) ArticleTitleMechanisms of mercury bioremediation Biochem. Soc. Trans. 30 672–674 Occurrence Handle10.1042/BST0300672 Occurrence Handle12196161

    Article  PubMed  Google Scholar 

  • AMM Essa DJ Julian SP Kidd NL Brown JL Hobman (2003) ArticleTitleMercury resistance determinants related to Tn21, Tn 1696 and Tn 5053 in enterobacteria from the pre-antibiotic era Antimicrob. Agents Chemother. 47 1115–1119 Occurrence Handle10.1128/AAC.47.3.1115-1119.2003 Occurrence Handle12604550

    Article  PubMed  Google Scholar 

  • Gadd GM (1992) Microbial control of heavy metal pollution. Soc. Gen. Microbiol.Symp. No 48 Eds Fry JC, Gadd GM, Herbert RA, Jones CW, Watson-Craik IA Cambridge University Press, Cambridge, UK pp. 59–88

  • GM Gadd (1993) ArticleTitleMicrobial formation and transformation of organometallic and organometalloid compounds FEMS Microbiol. Rev. 11 297–316 Occurrence Handle10.1016/0168-6445(93)90003-R

    Article  Google Scholar 

  • Glendinning KJ Macaskie LE, Brown NL (2005) Mercury tolerance of thermophilic Bacillus sp. and Ureibacillus sp. Biotechnol. Lett. (following paper)

  • J Gutknecht (1981) ArticleTitleInorganic mercury (Hg2+) transport through lipid bilayer membranes J. Membr. Biol. 61 61–66 Occurrence Handle10.1007/BF01870753

    Article  Google Scholar 

  • H Hartinger (1991) Handbach der Abwässer und Recyclingtechnik für die Metallverarbeiterde Industrie Carl Hanser Verlag München

    Google Scholar 

  • NJ Hayward TH Jeavons AJC Nicholson AG Thornton (1977) ArticleTitleMethyl mercaptan and dimethyldisulfide production from methionine by Proteus species detected by headspace gas liquid chromatography J. Clin. Microbiol. 6 187–194 Occurrence Handle332705

    PubMed  Google Scholar 

  • JL Hobman NL Brown (1997) ArticleTitleBacterial mercury resistance genes Met. Ions Biol. Syst. 34 527–568 Occurrence Handle9046583

    PubMed  Google Scholar 

  • S Ito T Nakamura EguchiY (1976) ArticleTitlePurification and characterization of methioninase from Pseudomonas putida J. Biochem. 79 1263–1272 Occurrence Handle8440

    PubMed  Google Scholar 

  • SAE Johansson JL Campbell (1988) PIXE: A Novel Technique for Elemental Analysis Wiley Chichester, UK

    Google Scholar 

  • W Kreis C Hession (1973) ArticleTitleIsolation and purifcation of L-methionine-α-deamino-γ-mercaptomethane-lyase (L-methioninase) from Clostridium sporogenes Cancer Res. 33 1862–1865 Occurrence Handle4720797

    PubMed  Google Scholar 

  • SJ Leach (1960) ArticleTitleThe reaction of thiol and disulphide groups with mercuric chloride and mercuric iodide J. Aust. Chem. Soc. 13 520–528

    Google Scholar 

  • JR Lloyd (2003) ArticleTitleMicrobial reduction of metals and radionuclides FEMS Microbiol. Rev. 27 411–425 Occurrence Handle10.1016/S0168-6445(03)00044-5 Occurrence Handle12829277

    Article  PubMed  Google Scholar 

  • Lloyd JR, Anderson RT, Macaskie LE (2005) In Bioremediation of Metals and Radionclides In Bioremediation: Applied Microbial Solutions to Real-World Environmental Cleanup eds R. Atlas, J. Philp ASM Press, Washington (in press)

  • MM Matlock BS Howerton DA Atwood. (2001) ArticleTitleIrreversible precipitation of mercury and lead J. Haz. Mats. 84 73–82 Occurrence Handle10.1016/S0304-3894(01)00190-X

    Article  Google Scholar 

  • Mühlbacher R (1994) Abtrennung von Schwermetallen aus Abwässern. Diploma Thesis, Institut Für Thermische Verfahrenstechnik und Umwelttechnik, Technical University of Graz, Austria

  • CN Mulligan RN Yong BF Gibbs (2001) ArticleTitleHeavy metal removal from sediments by bacteria J. Haz. Mats. 85 111–125 Occurrence Handle10.1016/S0304-3894(01)00224-2

    Article  Google Scholar 

  • M Pohl E Bock M Rinken M Avvdin WA Konig. (1984) ArticleTitleVolatile sulfur compounds produced by methionine degrading bacteria and their relationship to concrete corrosion Z. Naturforsch Teil C. 39 240–243

    Google Scholar 

  • J Ruiz-Herrera RL Starkey (1969) ArticleTitleDissimilation of methionine by fungi J. Bacteriol. 99 544–551 Occurrence Handle5808079

    PubMed  Google Scholar 

  • W Segal RL Starkey (1969) ArticleTitleMicrobial decomposition of methionine and identity of the resulting sulphur compounds J. Bacteriol. 98 908–913 Occurrence Handle5788717

    PubMed  Google Scholar 

  • E Sletten W Nerdal (1997) ArticleTitleInteraction of mercury with nucleic acids and their components Met. Ions Biol. Syst. 34 479–501 Occurrence Handle9046581

    PubMed  Google Scholar 

  • H Tamana A Criddle GW Grime D Vaughan J Spratt (1994) ArticleTitleTrace elements in platinum group minerals studied using nuclear microsopy Nucl. Instr. Meth. 89 213–218 Occurrence Handle10.1016/0168-583X(94)95175-6

    Article  Google Scholar 

  • B Tomita N Hamamura Y Ose (1981) ArticleTitleStudies on the control index of activated sludge. The mechanism on the formation of dimethyl disulfide in mixed liquor of activated sludge Eisei Kagaku. 27 98–104

    Google Scholar 

  • CL Wang PD Maratukulam AM Lum DS Clark JD Keasling ((2002)) ArticleTitleMetabolic engineering of an aerobic sulphate reduction pathway and its application to precipitation of cadmium on the cell surface Appl. Environ. Microbiol 66 4497–4502 Occurrence Handle10.1128/AEM.66.10.4497-4502.2000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne E. Macaskie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essa, A.M.M., Macaskie, L.E. & Brown, N.L. A New Method for Mercury Removal. Biotechnol Lett 27, 1649–1655 (2005). https://doi.org/10.1007/s10529-005-2722-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-005-2722-9

Key words

Navigation