Skip to main content
Log in

Circ-FAT1 Up-Regulates FOSL2 Expression by Sponging miR-619-5p to Facilitate Colorectal Cancer Progression

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Circular RNA FAT atypical cadherin 1 (circ-FAT1) has been reported to play roles in colorectal cancer (CRC) development. Here, the purpose of this study was to investigate the function and mechanism of circ-FAT1 in CRC tumorigenesis and its potential value in the clinic. Levels of genes and proteins were examined by quantitative real-time polymerase chain reaction and Western blot. In vitro assays were conducted using cell counting kit-8 assay, 5-Ethynyl-2′-deoxyuridine assay, flow cytometry, transwell assay, and tube formation assay, respectively. The target relationship between miR-619-5p and circ-FAT1 or FOS-like antigen 2 (FOSL2) was verified by dual-luciferase reporter and RNA immunoprecipitation assays. In vivo assay was performed using a mouse subcutaneous xenograft model. Circ-FAT1 and FOSL2 were highly expressed in CRC tissues and cells. Functionally, knockdown of circ-FAT1 or FOSL2 suppressed CRC cell apoptosis, migration, invasion, and angiogenesis, but induced cell apoptosis in vitro. Mechanistically, circ-FAT1 acted as a sponge for miR-619-5p to up-regulate the expression of FOSL2, which was confirmed to be a target of miR-619-5p. A series of rescue experiments demonstrated that miR-619-5p inhibition or FOSL2 overexpression reversed the inhibitory action of circ-FAT1 silencing on CRC cell malignant phenotypes mentioned above. Pre-clinically, lentivirus-mediated circ-FAT1 knockdown inhibited the tumorigenesis of CRC xenografts in nude mice via regulating miR-619-5p and FOSL2. Circ-FAT1 knockdown repressed FOSL2 expression by sponging miR-619-5p to suppress CRC tumorigenesis, providing a potential approach for CRC therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  Google Scholar 

  • Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D, Lawrie CH (2019) CircRNAs and cancer: biomarkers and master regulators. Semin Cancer Biol 58:90–99

    Article  CAS  Google Scholar 

  • Bian L, Zhi X, Ma L, Zhang J, Chen P, Sun S, Li J, Sun Y, Qin J (2018) Hsa_circRNA_103809 regulated the cell proliferation and migration in colorectal cancer via miR-532-3p/FOXO4 axis. Biochem Biophys Res Commun 505(2):346–352

    Article  CAS  Google Scholar 

  • Bozec A, Bakiri L, Jimenez M, Rosen ED, Catalá-Lehnen P, Schinke T, Schett G, Amling M, Wagner EF (2013) Osteoblast-specific expression of Fra-2/AP-1 controls adiponectin and osteocalcin expression and affects metabolism. J Cell Sci 126(Pt 23):5432–5440

    CAS  PubMed  Google Scholar 

  • Center MM, Jemal A, Smith RA, Ward E (2009) Worldwide variations in colorectal cancer. CA 59(6):366–378

    PubMed  Google Scholar 

  • Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388

    Article  Google Scholar 

  • Chen RX, Liu HL, Yang LL, Kang FH, Xin LP, Huang LR, Guo QF, Wang YL (2019) Circular RNA circRNA_0000285 promotes cervical cancer development by regulating FUS. Eur Rev Med Pharmacol Sci 23(20):8771–8778

    PubMed  Google Scholar 

  • Fearnhead NS, Wilding JL, Bodmer WF (2002) Genetics of colorectal cancer: hereditary aspects and overview of colorectal tumorigenesis. Br Med Bull 64:27–43

    Article  CAS  Google Scholar 

  • Gu MJ, Huang QC, Bao CZ, Li YJ, Li XQ, Ye D, Ye ZH, Chen K, Wang JB (2018) Attributable causes of colorectal cancer in China. BMC Cancer 18(1):38

    Article  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  Google Scholar 

  • Li M, Ding W, Tariq MA, Chang W, Zhang X, Xu W, Hou L, Wang Y, Wang J (2018a) A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics 8(21):5855–5869

    Article  CAS  Google Scholar 

  • Li S, Fang XD, Wang XY, Fei BY (2018b) Fos-like antigen 2 (FOSL2) promotes metastasis in colon cancer. Exp Cell Res 373(1–2):57–61

    Article  CAS  Google Scholar 

  • Li S, Liu Z, Fang XD, Wang XY, Fei BY (2019) MicroRNA (miR)-597-5p inhibits colon cancer cell migration and invasion by targeting FOS-like ANTIGEN 2 (FOSL2). Front Oncol 9:495

    Article  Google Scholar 

  • Liu Z, Zhou Y, Liang G, Ling Y, Tan W, Tan L, Andrews R, Zhong W, Zhang X, Song E et al (2019a) Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis 10(2):55

    Article  Google Scholar 

  • Liu Z, Yu Y, Huang Z, Kong Y, Hu X, Xiao W, Quan J, Fan X (2019b) CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis 10(12):900

    Article  CAS  Google Scholar 

  • Milde-Langosch K, Röder H, Andritzky B, Aslan B, Hemminger G, Brinkmann A, Bamberger CM, Löning T, Bamberger AM (2004) The role of the AP-1 transcription factors c-Fos, FosB, Fra-1 and Fra-2 in the invasion process of mammary carcinomas. Breast Cancer Res Treat 86(2):139–152

    Article  CAS  Google Scholar 

  • Okugawa Y, Grady WM, Goel A (2015) Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology 149(5):1204-1225.e1212

    Article  CAS  Google Scholar 

  • Renoux F, Stellato M, Haftmann C, Vogetseder A, Huang R, Subramaniam A, Becker MO, Blyszczuk P, Becher B, Distler JHW et al (2020) The AP1 transcription factor fosl2 promotes systemic autoimmunity and inflammation by repressing Treg development. Cell Rep 31(13):107826

    Article  CAS  Google Scholar 

  • Roy S, Khanna S, Azad A, Schnitt R, He G, Weigert C, Ichijo H, Sen CK (2010) Fra-2 mediates oxygen-sensitive induction of transforming growth factor beta in cardiac fibroblasts. Cardiovasc Res 87(4):647–655

    Article  CAS  Google Scholar 

  • Shang A, Gu C, Wang W, Wang X, Sun J, Zeng B, Chen C, Chang W, Ping Y, Ji P et al (2020) Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-β1 axis. Mol Cancer 19(1):117

    Article  CAS  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA 69(1):7–34

    PubMed  Google Scholar 

  • Song LN, Qiao GL, Yu J, Yang CM, Chen Y, Deng ZF, Song LH, Ma LJ, Yan HL (2020) Hsa_circ_0003998 promotes epithelial to mesenchymal transition of hepatocellular carcinoma by sponging miR-143-3p and PCBP1. J Exp Clin Cancer Res 39(1):114

    Article  CAS  Google Scholar 

  • Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17(5):272–283

    Article  CAS  Google Scholar 

  • Wan X, Guan S, Hou Y, Qin Y, Zeng H, Yang L, Qiao Y, Liu S, Li Q, Jin T et al (2021) FOSL2 promotes VEGF-independent angiogenesis by transcriptionnally activating Wnt5a in breast cancer-associated fibroblasts. Theranostics 11(10):4975–4991

    Article  CAS  Google Scholar 

  • Wang J, Sun D, Wang Y, Ren F, Pang S, Wang D, Xu S (2014) FOSL2 positively regulates TGF-β1 signalling in non-small cell lung cancer. PLoS ONE 9(11):e112150

    Article  Google Scholar 

  • Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan Y, Kong X, Bu J, Liu M, Xu S (2020) circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis 11(1):32

    Article  Google Scholar 

  • Yang H, Li X, Meng Q, Sun H, Wu S, Hu W, Liu G, Li X, Yang Y, Chen R (2020) CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol Cancer 19(1):13

    Article  CAS  Google Scholar 

  • Yiu AJ, Yiu CY (2016) Biomarkers in colorectal cancer. Anticancer Res 36(3):1093–1102

    CAS  PubMed  Google Scholar 

  • Yong W, Zhuoqi X, Baocheng W, Dongsheng Z, Chuan Z, Yueming S (2018) Hsa_circ_0071589 promotes carcinogenesis via the miR-600/EZH2 axis in colorectal cancer. Biomed Pharmacother 102:1188–1194

    Article  Google Scholar 

  • Yu J, Xu QG, Wang ZG, Yang Y, Zhang L, Ma JZ, Sun SH, Yang F, Zhou WP (2018) Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J Hepatol 68(6):1214–1227

    Article  CAS  Google Scholar 

  • Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, Sun H, Pan Y, He B, Wang S (2018) CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis 9(4):417

    Article  Google Scholar 

  • Zhang XL, Xu LL, Wang F (2017) Hsa_circ_0020397 regulates colorectal cancer cell viability, apoptosis and invasion by promoting the expression of the miR-138 targets TERT and PD-L1. Cell Biol Int 41(9):1056–1064

    Article  CAS  Google Scholar 

  • Zhang W, Wang Z, Cai G, Huang P (2021) Downregulation of Circ_0071589 suppresses cisplatin resistance in colorectal cancer by regulating the MiR-526b-3p/KLF12 axis. Cancer Manage Res 13:2717–2731

    Article  CAS  Google Scholar 

  • Zhou ZB, Huang GX, Fu Q, Han B, Lu JJ, Chen AM, Zhu L (2019) circ.RNA33186 contributes to the pathogenesis of osteoarthritis by sponging miR-127-5p. Mol Ther 27(3):531–541

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Niu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Niu, Z., Han, D. et al. Circ-FAT1 Up-Regulates FOSL2 Expression by Sponging miR-619-5p to Facilitate Colorectal Cancer Progression. Biochem Genet 60, 1362–1379 (2022). https://doi.org/10.1007/s10528-021-10148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-021-10148-6

Keywords

Navigation