Skip to main content
Log in

Lentiviral Vector-Mediated siRNA Knockdown of c-MYC: Cell Growth Inhibition and Cell Cycle Arrest at G2/M Phase in Jijoye Cells

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Inhibition of c-MYC has been considered as a potential therapy for lymphoma treatment. We explored a lentiviral vector-mediated small interfering RNA (siRNA) expression vector to stably reduce c-MYC expression in B cell line Jijoye cells and investigated the effects of c-MYC downregulation on cell growth, cell cycle, and apoptosis in vitro. The expression of c-MYC mRNA and protein levels were inhibited significantly by c-MYC siRNA. The c-MYC downregulation resulted in the inhibition of cell proliferation and cell cycle arrest at G2/M phase, which was associated with decreased expression of cyclin B and cyclin-dependent kinase 1 (CDK1) and increased expression of CDK inhibitor p21 proteins. In addition, downregulation of c-MYC induced cell apoptosis characterized by DNA fragmentation and caspase-3 activation. Taken together, these results suggest that lentiviral vector-mediated siRNA for c-MYC may be a promising approach for targeting c-MYC in the treatment of Burkitt lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aravin A, Tuschl T (2005) Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579(26):5830–5840

    Article  PubMed  CAS  Google Scholar 

  • Aukema SM, Siebert R, Schuuring E, van Imhoff GW, Kluin-Nelemans HC, Boerma EJ, Kluin PM (2011) Double-hit B-cell lymphomas. Blood 117(8):2319–2331

    Article  PubMed  CAS  Google Scholar 

  • Baluchamy S, Rajabi HN, Thimmapaya R, Navaraj A, Thimmapaya B (2003) Repression of c-MYC and inhibition of G1 exit in cells conditionally overexpressing p300 that is not dependent on its histone acetyltransferase activity. Proc Natl Acad Sci USA 100(16):9524–9529

    Article  PubMed  CAS  Google Scholar 

  • Blum KA, Lozanski G, Byrd JC (2004) Adult Burkitt leukemia and lymphoma. Blood 104(10):3009–3020

    Article  PubMed  CAS  Google Scholar 

  • Bosher JM, Labouesse M (2000) RNA interference: genetic wand and genetic watchdog. Nat Cell Biol 2(2):E31–E36

    Article  PubMed  CAS  Google Scholar 

  • Busch K, Keller T, Fuchs U, Yeh RF, Harbott J, Klose I, Wiemels J, Novosel A, Reiter A, Borkhardt A (2007) Identification of two distinct MYC breakpoint clusters and their association with various IGH breakpoint regions in the t(8;14) translocations in sporadic Burkitt-lymphoma. Leukemia 21(8):1739–1751

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Bennett RL, May WS (2008) c-MYC and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J Biol Chem 283(21):14490–14496

    Article  PubMed  CAS  Google Scholar 

  • Dang CV (2012) MYC on the path to cancer. Cell 30–149(1):22–35

    Article  Google Scholar 

  • Dang CV, Lewis BC (1997) Role of oncogenic transcription factor c-MYC in cell cycle regulation, apoptosis and metabolism. J Biomed Sci 4(6):269–278

    Article  PubMed  CAS  Google Scholar 

  • Dropulić B (2011) Lentiviral vectors: their molecular design, safety, and use in laboratory and preclinical research. Hum Gene Ther 22(6):649–657

    Article  PubMed  Google Scholar 

  • Gartel AL, Shchors K (2003) Mechanisms of c-MYC-mediated transcriptional repression of growth arrest genes. Exp Cell Res 283(1):17–21

    Article  PubMed  CAS  Google Scholar 

  • Gustafson WC, Weiss WA (2010) Myc proteins as therapeutic targets. Oncogene 29(9):1249–1259

    Article  PubMed  CAS  Google Scholar 

  • Herkert B, Eilers M (2010) Transcriptional repression: the dark side of myc. Genes Cancer 1(6):580–586

    Article  PubMed  CAS  Google Scholar 

  • Hoffman B, Liebermann DA (2008) Apoptotic signaling by c-MYC. Oncogene 27(50):6462–6472

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Zhao Y, Huang W (2006) Blocking c-MYC and stat3 by E. coli expressed and enzyme digested siRNA in mouse melanoma. Biochem Biophys Res Commun 348(2):600–605

    Article  PubMed  CAS  Google Scholar 

  • Hotti A, Järvinen K, Siivola P, Hölttä E (2000) Caspases and mitochondria in c-Myc-induced apoptosis: identification of ATM as a new target of caspases. Oncogene 19(19):2354–2362

    Article  PubMed  CAS  Google Scholar 

  • Joos S, Falk MH, Lichter P, Haluska FG, Henglein B, Lenoir GM, Bornkamm GW (1992) Variable breakpoints in Burkitt lymphoma cells with chromosomal t(8;14) translocation separate c-MYC and the IgH locus up to several hundred kb. Hum Mol Genet 1:625–632

    Article  PubMed  CAS  Google Scholar 

  • Jung P, Hermeking H (2009) The c-MYC-AP4-p21 cascade. Cell Cycle 8(7):982–989

    Article  PubMed  CAS  Google Scholar 

  • Kabilova TO, Vladimirova AV, Chernolovskaya EL, Vlassov VV (2006) Arrest of cancer cell proliferation by dsRNAs. Ann NY Acad Sci 1091:425–436

    Article  PubMed  CAS  Google Scholar 

  • Kangas A, Nicholson DW, Hölttä E (1998) Involvement of CPP32/Caspase-3 in c-Myc-induced apoptosis. Oncogene 16(3):387–398

    Article  PubMed  CAS  Google Scholar 

  • Klapproth K, Wirth T (2010) Advances in the understanding of MYC-induced lymphomagenesis. Br J Haematol 149(4):484–497

    Article  PubMed  CAS  Google Scholar 

  • Kuttler F, Mai S (2006) c-MYC, genomic instability and disease. Genome Dyn 1:171–190

    Article  PubMed  CAS  Google Scholar 

  • Lin CP, Liu JD, Chow JM, Liu CR, Liu HE (2007) Small-molecule c-MYC inhibitor, 10058–F4, inhibits proliferation, downregulates human telomerase reverse transcriptase and enhances chemosensitivity in human hepatocellular carcinoma cells. Anticancer Drugs 18(2):161–170

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( {2^{-\Updelta \Updelta {\text{C}}}}_{\text{T}} \) method. Methods 25:402–408

  • Llano M, Gaznick N, Poeschla EM (2009) Rapid, controlled and intensive lentiviral vector-based RNAi. Methods Mol Biol 485:257–270

    Article  PubMed  CAS  Google Scholar 

  • Magrath I (1990) The pathogenesis of Burkitt’s lymphoma. Adv Cancer Res 55:133–270

    Article  PubMed  CAS  Google Scholar 

  • Morrish F, Neretti N, Sedivy JM, Hockenbery DM (2008) The oncogene c-MYC coordinates regulation of metabolic networks to enable rapid cell cycle entry. Cell Cycle 7(8):1054–1066

    Article  PubMed  CAS  Google Scholar 

  • Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM (2009) c-MYC activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene 28(27):2485–2491

    Article  PubMed  CAS  Google Scholar 

  • Nigris F, Balestrieri ML, Napoli C (2006) Targeting c-MYC, Ras and IGF cascade to treat cancer and vascular disorders. Cell Cycle 5(15):1621–1628

    Article  PubMed  Google Scholar 

  • Obaya AJ, Kotenko I, Cole MD, Sedivy JM (2002) The proto-oncogene c-MYC acts through the cyclin-dependent kinase (Cdk) inhibitor P21(Kip1) to facilitate the activation of Cdk4/6 and early G(1) phase progression. J Biol Chem 277(34):31263–31269

    Article  PubMed  CAS  Google Scholar 

  • Pajic A, Spitkovsky D, Christoph B, Kempkes B, Schuhmacher M, Staege MS, Brielmeier M, Ellwart J, Kohlhuber F, Bornkamm GW, Polack A, Eick D (2000) Cell cycle activation by c-MYC in a Burkitt lymphoma model cell line. Int J Cancer 87(6):787–793

    Article  PubMed  CAS  Google Scholar 

  • Peterson CW, Ayer DE (2011) An extended Myc network contributes to glucose homeostasis in cancer and diabetes. Front Biosci 17:2206–2223

    Article  Google Scholar 

  • Radziszewska A, Schroer SA, Choi D, Tajmir P, Radulovich N, Ho JC, Wang L, Liadis N, Hakem R, Tsao MS, Penn LZ, Evan GI, Woo M (2009) Absence of caspase-3 protects pancreatic β-cells from c-Myc-induced apoptosis without leading to tumor formation. J Biol Chem 284(16):10947–10956

    Article  PubMed  CAS  Google Scholar 

  • Salaverria I, Siebert R (2011) The gray zone between Burkitt’s lymphoma and diffuse large B-cell lymphoma from a genetics perspective. J Clin Oncol 29(14):1835–1843

    Article  PubMed  Google Scholar 

  • Schiffer CA (2001) Treatment of high-grade lymphoid malignancies in adults. Semin Hematol 38(4 Suppl 10):22–26

    Article  PubMed  CAS  Google Scholar 

  • Schlee M, Schuhmacher M, Hölzel M, Laux G, Bornkamm GW (2007) c-MYC impairs immunogenicity of human B cells. Adv Cancer Res 97:167–188

    Article  PubMed  CAS  Google Scholar 

  • Slack GW, Gascoyne RD (2011) MYC and aggressive B-cell lymphomas. Adv Anat Pathol 18(3):219–228

    Article  PubMed  Google Scholar 

  • Sobolewski C, Cerella C, Dicato M, Diederich M (2011) Cox-2 inhibitors induce early c-MYC downregulation and lead to expression of differentiation markers in leukemia cells. Cell Cycle 10(17):2978–2993

    Article  PubMed  CAS  Google Scholar 

  • Steidl C, Gascoyne RD (2011) The molecular pathogenesis of primary mediastinal large B-cell lymphoma. Blood 118(10):2659–2669

    Article  PubMed  CAS  Google Scholar 

  • Tomita N (2011) BCL2 and MYC dual-hit lymphoma/leukemia. J Clin Exp Hematop 51(1):7–12

    Article  PubMed  Google Scholar 

  • Vermeulen K, Berneman ZN, Van Bockstaele DR (2003) Cell cycle and apoptosis. Cell Prolif 36(3):165–175

    Article  PubMed  CAS  Google Scholar 

  • Yap CS, Peterson AL, Castellani G, Sedivy JM, Neretti N (2011) Kinetic profiling of the c-MYC transcriptome and bioinformatic analysis of repressed gene promoters. Cell Cycle 10(13):2184–2196

    Article  PubMed  CAS  Google Scholar 

  • Zimonjic DB, Keck-Waggoner C, Popescu NC (2001) Novel genomic imbalances and chromosome translocations involving c-MYC gene in Burkitt’s lymphoma. Leukemia 15(10):1582–1588

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Qingdao Municipal Natural Science Foundation (Grant No. 2012-1-3-2-5-nsh), the Shandong Provincial Natural Science Foundation, China (Grant No. Y2008C170) and the National Natural Science Foundation of China (Grant No. 31100824).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiqin Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, A., Ye, J., Zhang, K. et al. Lentiviral Vector-Mediated siRNA Knockdown of c-MYC: Cell Growth Inhibition and Cell Cycle Arrest at G2/M Phase in Jijoye Cells. Biochem Genet 51, 603–617 (2013). https://doi.org/10.1007/s10528-013-9590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-013-9590-0

Keywords

Navigation