Skip to main content
Log in

Effect of Chitinase on Resistance to Fungal Pathogens in Sea Buckthorn, Hippophae rhamnoides, and Cloning of Class I and III Chitinase Genes

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Sea buckthorn (Hippophae rhamnoides L.) is naturally distributed from Asia to Europe. It has been widely planted as an ornamental shrub and is rich in nutritional and medicinal compounds. Fungal pathogens that cause diseases such as dried-shrink disease are threats to the production of this plant. In this study, we isolated the dried-shrink disease pathogen from bark and total chitinase protein from leaves of infected plants. The results of the Oxford Cup experiment suggested that chitinase protein inhibited the growth of this pathogen. To improve pathogen resistance, we cloned chitinase Class I and III genes in H. rhamnoides, designated Hrchi1 and Hrchi3. The full-length cDNA of the open reading frame region of Hrchi1 contained 903 bp encoding 300 amino acids and Hrchi3 contained 894 bp encoding 297 amino acids. Active domain analysis, protein types, and secondary and 3D structures were predicted using online software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bliffeld M, Mundy J, Potrykus I, Fütterer J (1999) Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet 98:1079–1086

    Article  CAS  Google Scholar 

  • Brunner F, Stintzi A, Fritig B, Legrand M (1998) Substrate specificities of tobacco chitinases. Plant J 14:225–234

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Su X, Zhang H, Sun K, Ma RJ, Chen XL (2010) High genetic differentiation of Hippophae rhamnoides ssp. yunnanensis (Elaeagnaceae), a plant endemic to the Qinghai-Tibet Plateau. Biochem Genet 48:565–576

    Article  PubMed  CAS  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  PubMed  CAS  Google Scholar 

  • Derckel JP, Audran JC, Haye B, Lambert B, Legendre L (1998) Characterization, induction by wounding and salicylic acid, and activity against Botrytis cinerea of chitinases and β-1,3-glucanases of ripening grape berries. Physiol Plant 104:56–64

    Article  CAS  Google Scholar 

  • Di Sansebastiano GP, Paris N, Marc Martin S, Neuhaus JM (1998) Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J 15:449–457

    Article  PubMed  Google Scholar 

  • Du HJ (2001) Research and analysis on disciplinarian and cause of the dried-shrink disease of Hippophae rhamnaides. Hippophae 14:13–15 (in Chinese)

    Google Scholar 

  • Ghangal R, Raghuvanshi S, Sharma PC (2009) Isolation of good quality RNA from a medicinal plant sea buckthorn, rich in secondary metabolites. Plant Physiol Biochem 47:1113–1115

    Article  PubMed  CAS  Google Scholar 

  • Grison R, Grezes Besset B, Schneider M, Lucante N, Olsen L, Leguay JJ, Toppan A (1996) Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nat Biotechnol 14:643–646

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Kumar R, Pal K, Singh V, Banerjee PK, Sawhney RC (2006) Influence of sea buckthorn (Hippophae rhamnoides L.) flavone on dermal wound healing in rats. Mol Cell Biochem 290:193–198

    Article  PubMed  CAS  Google Scholar 

  • Heinz C, Barbaza M (1998) Environmental changes during the late glacial and post-glacial period in the central Pyrenees (France): new charcoal analysis and archaeological data. Rev Palaeobot Palynol 104:1–17

    Article  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Kallio H, Yang B, Peippo P (2002) Effects of different origins and harvesting time on vitamin C, tocopherols, and tocotrienols in sea buckthorn (Hippophaë rhamnoides) berries. J Agric Food Chem 50:6136–6142

    Article  PubMed  CAS  Google Scholar 

  • Lai ZB, Vinod KM, Zheng ZY, Fan BF, Chen ZX (2008) Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol 8:68

    Article  PubMed  Google Scholar 

  • Li H, Ruan CJ, Teixeira Da Silva JA, Liu BQ (2010) Associations of SRAP markers with dried-shrink disease resistance in a germplasm collection of sea buckthorn (Hippophae L.). Genome 53:447–457

    Article  PubMed  Google Scholar 

  • Li TSC, Beveridge THJ, Drover JCG (2006) Phytosterol content of sea buckthorn (Hippophae rhamnoides L.) seed oil: extraction and identification. Food Chem 101:1633–1639

    Article  Google Scholar 

  • Liu XH, Ji BY, Sun CH, Wang YH (2006) Isolation, screening and identification of antagonistic actinomycetes of seabuckthorn dried-shrink disease. Hippophae 19:23–25 (in Chinese)

    Google Scholar 

  • Lu R (1992) Sea buckthorn a multipurpose plant species for fragile mountains. ICIMOD Occasional Paper (Katmandu, Nepal) 20:62

  • Meins FJ, Fritig B, Linthorst HJM, Mikkelsen JD, Neuhaus JM, Ryals J (1994) Plant chitinase genes. Plant Mol Biol Rep 12:S22–S28

    Article  CAS  Google Scholar 

  • Melchers LS, Apotheker De Groot M, Van Der Knaap JA, Ponstein AS, Sela Buurlage MB, Bol JF, Cornelissen BJC, Van Den Elzen PJM, Linthorst HJM (1994) A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J 5:469–480

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus JM, Ahl Goy P, Hinz U, Flores S, Meins F Jr (1991) High-level expression of a tobacco chitinase gene in Nicotiana sylvestris susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol Biol 16:141–151

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KK, Mikkelsen JD, Kragh KM, Bojsen K (1993) An acidic class III chitinase in sugar beet: induction by Cercospora beticola, characterization, and expression in transgenic tobacco plants. Mol Plant Microbe Interact 6:495–506

    Article  PubMed  CAS  Google Scholar 

  • Robert N, Roche K, Lebeau Y, Breda C, Boulay M, Esnault R, Buffard D (2002) Expression of grapevine chitinase genes in berries and leaves infected by fungal or bacterial pathogens. Plant Sci 162:389–400

    Article  CAS  Google Scholar 

  • Roy PS, Porwal MC, Sharma L (2001) Mapping of Hippophae rhamnoides Linn. in the adjoining areas of Kaza in Lahul and Spiti using remote sensing and GIS. Curr Sci 80:1107–1111

    Google Scholar 

  • Ruan CJ, Li DQ (2005) AFLP fingerprinting analysis of some cultivated varieties of sea buckthorn (Hippophae rhamnoides). J Genet 84:311–316

    Article  PubMed  CAS  Google Scholar 

  • Ruan CJ, Teixeira Da Silva JA, Jin H, Li H, Li DQ (2007) Research and biotechnology in sea buckthorn (Hippophae ssp.). Med Arom Plant Sci Biotechnol 1:47–60

    Google Scholar 

  • Ruan CJ, Li H, Mopper S (2009) Characterization and identification of ISSR markers associated with resistance to dried-shrink disease in sea buckthorn. Mol Breeding 24:255–268

    Article  CAS  Google Scholar 

  • Seglina D, Karklina D, Ruisa S, Krasnova I (2006) The effect of processing on the composition of sea buckthorn juice. J Fruit Ornam Plant Res 14:257–263

    CAS  Google Scholar 

  • Sun K, Chen W, Ma RJ, Chen XL, Li A, Ge S (2006) Genetic variation in Hippophae rhamnoides ssp. sinensis (Elaeagnaceae) revealed by RAPD markers. Biochem Genet 42:186–197

    Article  Google Scholar 

  • Tabei Y, Kitade S, Nishizawa Y, Kikuchi N, Kayano T, Hibi T, Akutsu K (1998) Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Rep 17:159–164

    Article  CAS  Google Scholar 

  • Tian CJ, Nan P, Shi SH, Chen JK, Zhong Y (2004) Molecular genetic variation in Chinese populations of three subspecies of Hippophae rhamnoides. Biochem Genet 42:259–267

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Kobori K, Miyashita K, Fujii T, Sakai H, Uchida M, Tanaka H (1993) Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem 268:18567–18572

    PubMed  CAS  Google Scholar 

  • Zeb A (2004) Chemical and nutritional constituents of sea buckthorn juice. Pakistan J Nutr 3:99–106

    Article  Google Scholar 

  • Zhang J (2006) Screening and application of antagonistic fungus of seabuckthorn Plowvigneia hippophaeos. Global Seabuckthorn Res Dev 4 (in Chinese)

  • Zhang JT, Chen TG (2007) Effects of mixed Hippophae rhamnoides on community and soil in planted forests in the Eastern Loess Plateau, China. Ecol Eng 31:115–121

    Article  Google Scholar 

  • Zhao GY, Zong W (2006) The induction and application of soybean chitinase. Modern Food Sci Technol 22:4–7 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgments

The authors extend thanks to Prof. Zhang Jun of the Institute of Fuxin Sea Buckthorn, Fuxin, China, and Mrs. Jin Hua. This work was supported by the Nutraceutical Bio Brain Korea 21 Project Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Kwan Hong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 769 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, YL., Hong, SK. Effect of Chitinase on Resistance to Fungal Pathogens in Sea Buckthorn, Hippophae rhamnoides, and Cloning of Class I and III Chitinase Genes. Biochem Genet 50, 600–615 (2012). https://doi.org/10.1007/s10528-012-9504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-012-9504-6

Keywords

Navigation