Skip to main content
Log in

Determination of Genetic Diversity of Vitis vinifera cv. Kabarcik Populations from the Coruh Valley Using SSR Markers

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Northeastern Turkey is recognized as one of the most important germplasm centers for the grape in the world. In the present study, simple sequence repeat markers were used to investigate the genetic diversity between four Vitis vinifera cv. Kabarcik populations sampled from the Coruh Valley in Turkey, at altitudes of 800–1,150 m. The mean observed number of alleles per locus varied from 2 (loci VVMD7 and VVMD24) to 6 (VVS2) among populations. The population from the highest altitude showed the greatest average number of alleles, 4.5. With regard to the six loci examined in all populations, the mean observed heterozygosity was higher than the expected heterozygosity. Among the loci, VVS2 (probability of identity = 0.137) was found to be the most informative among populations. Genetic distances between populations ranged from 0.072 to 0.216. Genetic differentiation among populations was strongly related to geographic distances in all populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agar G, Halasz J, Ercisli S (2011) Genetic relationships among wild and cultivated blackberries (Rubus caucasicus L.) based on amplified fragment length polymorphism markers. Plant Biosyst 145(2):347–352

    Article  Google Scholar 

  • Arnold C, Rossetto M, McNally J, Henry RJ (2002) The application of SSRs characterized for grape (Vitis vinifera) to conservation studies in Vitaceae. Am J Bot 89:22–28

    Article  PubMed  CAS  Google Scholar 

  • Barreneche T, Bodenes C, Lexer C, Trontin JF, Fluch S, Streiff R, Plomion C, Roussel G, Steinkellner H, Burg K, Favre JM, Glössl J, Kremer A (1998) A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theor Appl Genet 97:1090–1103

    Article  CAS  Google Scholar 

  • Benjak A, Ercisli S, Vokurka A, Maletic E, Pejic I (2005) Genetic relationships among grapevine cultivars native to Croatia, Greece and Turkey. Vitis 44(2):73–77

    CAS  Google Scholar 

  • Borrego J, Rodriguez I, Andres MT, Martin J, Chavez J, Cabello F, Ibanez J (2001) Characterization of the most important Spanish grape varieties through isoenzyme and microsatellite analysis. Proc Int Symp Mol Markers, Acta Hortic 546:371–375

    CAS  Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Bandman EB, Meredith CP (1993) DNA fingerprint characterization of some wine grape cultivars. Am J Enol Viticult 44(3):166–274

    Google Scholar 

  • Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633

    Article  PubMed  CAS  Google Scholar 

  • Buckler ES, Thornsberry JM, Kresovich S (2001) Molecular diversity, structure and domestication of grasses. Genet Res 77:213–218

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Wang A, Chen K, Wan D, Liu J (2009) Genetic diversity and population structure of the endangered and medically important Rheum tanguticum (Polygonaceae) revealed by SSR markers. Biochem Syst Ecol 37(5):613–621

    Article  CAS  Google Scholar 

  • Crespan M, Milani N (2001) The muscats: a molecular analysis of synonyms, homonyms and genetic relationships within a large family of grapevine cultivars. Vitis 40:23–30

    CAS  Google Scholar 

  • Doebley J (1989) Isozymic evidence and evolution of crop plants. In: Soltis ED, Soltis PM (eds) Isozymes in plant biology. Dioscorides, Portland, pp 165–191

    Chapter  Google Scholar 

  • Fatahi R, Ebadi A, Basil N, Mehlenbacher SA, Zamani Z (2003) Characterization of Iranian grapevine cultivars using microsatellite markers. Vitis 42(4):185–192

    CAS  Google Scholar 

  • Hernandez-Verdugo S, Luna-Reyes R, Oyama K (2001) Genetic structure and differentiation of wild and domesticated populations of Capsicum annuum from Mexico. Plant Syst Evol 226:129–142

    Article  Google Scholar 

  • Ibanez J, Andres MT, Molino A, Borrego J (2003) Genetic study of key Spanish grapevine varieties using microsatellite analysis. Am J Enol Viticult 54(1):22–30

    CAS  Google Scholar 

  • Kafkas S, Ozgen M, Dogan Y, Ozcan B, Ercisli S, Serce S (2008) Molecular characterization of mulberry accessions in Turkey by AFLP markers. J Am Soc Hortic Sci 133(4):593–597

    Google Scholar 

  • Lefort F, Roubelakis-Angelakis KA (2001) Genetic comparison of Greek cultivars of Vitis vinifera L. by nuclear microsatellite profiling. Am J Ecol Vitic 52(2):101–108

    Google Scholar 

  • Lefort F, Lally M, Thompson D, Douglas GC (1998) Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Quercus robur L.) at Tullynally, Ireland. Silvae Genet 47(56):257–262

    Google Scholar 

  • Lopes MS, Sefc KM, Dias EE, Steinkellner H, Machado MLD, Machado AD (1999) The use of microsatellites for germplasm management in a Portuguese grapevine collection. Theor Appl Genet 99(3–4):733–739

    Article  Google Scholar 

  • Merdinoglu D, Butterlin G, Bauer C, Balthazard DJ (2000) Comparison of RAPD, AFLP and SSR (microsatellite) markers for genetic diversity analysis in Vitis vinifera L. Proc 7th Int Symp Grapevine Genet Breed, Acta Hortic 528:193–197

    CAS  Google Scholar 

  • Minch E, Ruiz-Linares A, Goldstein DB, Feldman M, Cavalli-Sforza LL (1995) Microsat (version 1.4d): a computer program for calculating various statistics on microsatellite allele data. Stanford University, Stanford

    Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR amplification of microsatellite markers in plant genetics. Plant J 3:175–182

    Article  PubMed  CAS  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of grapevine. Cambridge University Press, Cambridge

    Google Scholar 

  • Nunez Y, Fresno J, Torres V, Ponz F, Gallego FJ (2004) Practical use of microsatellite markers to manage Vitis vinifera germplasm: molecular identification of grapevine samples collected blindly in D.O. “El Bierzo” (Spain). J Hortic Sci Biotech 79(3):437–440

    CAS  Google Scholar 

  • Ohsawa T, Ide Y (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Global Ecol Biogeogr 17:152–162

    Article  Google Scholar 

  • Otero-Arnaiz A, Casas A, Hamrick JL, Cruse-Sanders J (2005) Genetic variation and evolution of Polaskia chichipe under domestication in Tehuacan Valley, central Mexico. Mol Ecol 14:1603–1611

    Article  PubMed  CAS  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  PubMed  CAS  Google Scholar 

  • Pedryc A, Ruthner S, Herman R, Krska B, Hegedus A, Halasz J (2009) Genetic diversity of apricot revealed by a set of SSR markers from linkage group G1. Sci Hortic 121:19–26

    Article  CAS  Google Scholar 

  • Pickersgill B (1969) The domestication of chili peppers. In: Ucko PJ, Dimbley GW (eds) The domestication and exploitation of plants and animals. Duckworth, London, pp 443–450

    Google Scholar 

  • Powell W, Machray GC, Provan J (1996a) Polymorphism revealed by simple sequence repeats. Trends in Plant Sci 1:215–222

    Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996b) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Rafalski JA, Vogel JM, Morgante M, Powell W, Andre C, Tingey SV (1996) Generating and using DNA markers in plants. In: Birren B, Lai E (eds) Nonmammalian genomic analysis: a practical guide. Academic Press, London, pp 75–134

    Chapter  Google Scholar 

  • Rohlf FJ (1988) NTSYSpc: Numerical taxonomy and multiware analysis system version 2.0. Applied Biostatistics, Setauket

    Google Scholar 

  • Rudmann-Maurer K, Weyand A, Fischer M, Stocklin J (2007) Microsatellite diversity of the agriculturally important alpine grass Poa alpina in relation to land use and natural environment. Ann Bot 100:1249–1258

    Article  PubMed  Google Scholar 

  • Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W, Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714–722

    Article  CAS  Google Scholar 

  • Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726

    Article  CAS  Google Scholar 

  • Sefc KM, Lefort F, Grando MS, Scott KD, Steinkellner H, Thomas MR (2001) Microsatellite markers for grapevine: a state of the art. In: Roubelakis-Angelakis KA (ed) Molecular biology and biotechnology of the grapevine. Kluwer Academic, The Netherlands, pp 1–29

    Google Scholar 

  • Selli F, Bakir M, Inan G, Aygün H, Boz Y, Yasasin AS, Ozer C, Akman B, Söylemezoglu G, Kazan K, Ergül A (2007) Simple sequence repeat-based assessment of genetic diversity in ‘Dimrit’ and ‘Germe’ grapevine accessions from Turkey. Vitis 46:182–187

    CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. Freeman, San Francisco, p 573

    Google Scholar 

  • Szczys P, Hughes CR, Kessel RV (2005) Novel microsatellite markers used to determine the population genetic structure of the endangered roseate tern, Sterna dougallii, in Northwest Atlantic and Western Australia. Conserv Genet 6:461–466

    Article  CAS  Google Scholar 

  • Tangolar SG, Soydam S, Bakir M, Karaagac E, Tangolar S, Ergul A (2009) Genetic analysis of grapevine cultivars from the eastern Mediterranean region of Turkey, based on SSR markers. Tarim Bilim Derg 15(1):1–8

    Google Scholar 

  • Thomas MR, Matsumoto S, Cain P, Scott NS (1993) Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor Appl Genet 86:173–180

    CAS  Google Scholar 

  • Wagner HW, Sefc KM (1999) Identity 1.0. Centre for Applied Genetics. University of Agricultural Science, Vienna

    Google Scholar 

  • Wang L, Yang J, Guo J, Zhao G (2007) Genetic structure and differentiation of Psathyrostachys huashanica populations detected with RAPD markers. Frontier Biol China 2(1):39–45

    Article  Google Scholar 

  • Wang YH, Korpelainen H, Li CY (2006) Microsatellite polymorphism in the edaphic spruce, Picea asperata, originating from the mountains of China. Silva Fenn 40(4):561–575

    Google Scholar 

  • Zeder MA, Emshwiller E, Smith BD, Bradley DG (2006) Documenting domestication: the intersection of genetics and archaeology. Trends Genet 22:139–155

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Wang LY, Meng LH, Liu JQ (2008) Genetic variation in the endangered Anisodus tanguticus (Solanaceae), an alpine perennial endemic to the Qinghai-Tibetan Plateau. Genetica 132:123–129

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Research Funds appropriated to Atatürk University (Project no. 2008/78).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalan Yildirim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agar, G., Yildirim, N., Ercisli, S. et al. Determination of Genetic Diversity of Vitis vinifera cv. Kabarcik Populations from the Coruh Valley Using SSR Markers. Biochem Genet 50, 476–483 (2012). https://doi.org/10.1007/s10528-011-9492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-011-9492-y

Keywords

Navigation