Skip to main content
Log in

Cloning and Identification of MicroRNAs in Earthworm (Eisenia fetida)

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) (noncoding RNAs of 20–25 nucleotides) play important roles in the post-transcriptional regulation of gene expression in various eukaryotes and prokaryotes. Piwi-interacting RNAs function by combining with PIWI proteins to regulate protein synthesis and to stabilize mRNA, the chromatin framework, and genome structure. This study investigates the role of miRNAs in regeneration. A scrDNA library was constructed, and 17 noncoding RNAs from Eisenia fetida (an optimal model for the study of earthworm regeneration) were cloned and characterized. In addition, reverse transcription polymerase chain reaction was performed to analyze the expression of four small RNAs during different developmental stages. The expression levels of these RNAs in regenerating tissue were higher than in normal tissue, and the expression patterns of these small RNAs were unique during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9(3):277–279

    Article  PubMed  CAS  Google Scholar 

  • Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442(7099):203–207

    PubMed  CAS  Google Scholar 

  • Begemann G (2008) MicroRNAs and RNA interference in zebrafish development. Zebrafish 5(2):111–119

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128(6):1089–1103

    Article  PubMed  CAS  Google Scholar 

  • Büssing I, Slack FJ, Grosshans H (2008) Let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 14(9):400–409

    Article  PubMed  Google Scholar 

  • Charles ED (1991) A history of regeneration research. Cambridge University Press, Chicago

    Google Scholar 

  • Colman JB (1991) The future of cloning. Nature 402(6763):743–746

    Google Scholar 

  • Gates GE (1954) On regeneration capacity of earthworms of the family Lumbricidae. Am Midl Nat 50(2):414–419

    Article  Google Scholar 

  • Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442(7099):199–202

    PubMed  Google Scholar 

  • Gonzalez-Estevez C, Arseni V, Thambyrajah RS (2009) Diverse miRNA spatial expression patterns suggest important roles in homeostasis and regeneration in planarians. Int J Dev Biol 53(4):493–505

    Article  PubMed  CAS  Google Scholar 

  • Grivna ST, Beyret E, Wang Z, Lin H (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20(13):1709–1714

    Article  PubMed  CAS  Google Scholar 

  • Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 129(1):69–82

    Article  PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858

    Article  PubMed  CAS  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862

    Article  PubMed  CAS  Google Scholar 

  • Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science 313(5785):363–367

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2[-ΔΔC(T)] method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Meyers BC, Green PJ (2007) Construction of small RNA cDNA libraries for deep sequencing. Methods 43(2):110–117

    Article  PubMed  Google Scholar 

  • Makarev E, Spence JR, Del Rio-Tsonis K, Tsonis PA (2006) Identification of microRNAs and other small RNAs from the adult newt eye. Mol Vis 12:1386–1391

    PubMed  CAS  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  PubMed  CAS  Google Scholar 

  • Palakodeti D, Smielewska M, Graveley BR (2006) MicroRNAs from the planarian Schmidtea mediterranea: a model system for stem cell biology. RNA 12(9):1640–1649

    Article  PubMed  CAS  Google Scholar 

  • Palakodeti D, Smielewska M, Lu YC, Yeo GW, Graveley BR (2008) The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA 14(6):1174–1186

    Article  PubMed  CAS  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16(13):1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Ro S, Park C, Jin J, Sanders KM, Yan W (2006) A PCR-based method for detection and quantification of small RNAs. Biochem Biophys Res Commun 351(3):756–763

    Article  PubMed  CAS  Google Scholar 

  • Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18:505–516

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schulman BR, Esquela-Kerscher A, Slack FJ (2005) Reciprocal expression of lin-41 and the microRNAs let-7 and mir-125 during mouse embryogenesis. Dev Dyn 234(4):1046–1054

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20(13):1732–1743

    Article  PubMed  CAS  Google Scholar 

  • Welch MF, Drewes CD (1985) Escape reflex development during posterior regeneration in the earthworm Eisenia foetida. J Exp Zool 235(1):35–44

    Article  Google Scholar 

  • Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11(1):50–68

    Article  PubMed  CAS  Google Scholar 

  • Yin VP, Thomson JM, Thummel R, Hyde DR, Hammond SM, Poss KD (2008) Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish. Genes Dev 22(6):728–733

    Article  PubMed  CAS  Google Scholar 

  • Ying SY (2006) MicroRNA protocols. Humana Press, Totowa, New Jersey

    Book  Google Scholar 

  • Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA (2006) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63(2):246–254

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30700067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Tao Zhang.

Additional information

Xue-Mei Huang and Qing-Nan Tian contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, XM., Tian, QN., Bao, ZX. et al. Cloning and Identification of MicroRNAs in Earthworm (Eisenia fetida). Biochem Genet 50, 1–11 (2012). https://doi.org/10.1007/s10528-011-9452-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-011-9452-6

Keywords

Navigation