Skip to main content
Log in

Effect of New SNP Within Bovine Prolactin Gene Enhancer Region on Expression in the Pituitary Gland

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

A new single nucleotide polymorphism was revealed using PCR–SSCP and sequencing methods within the bovine prolactin distal promoter region described as a functional enhancer. The A→G transition at position −1043 abolishes the recognition site for Hsp92II restriction endonuclease, allowing for PCR–RFLP genotyping. The application of real-time PCR revealed that the prolactin gene expression level in the pituitary was higher in cattle with the AA genotype than in those with the GG genotype. EMSA analysis, however, showed increased nuclear protein binding to the sequence variant with G, suggesting a possible inhibition event, in which the transcription factors Pit1, Oct1, and YY1 could be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez-Salas LM, Benitez-Hess ML, Dipaolo JA (2005) YY-1 and c-Jun transcription factors participate in the repression of the human involucrin promoter. Int J Oncol 26:259–266

    PubMed  CAS  Google Scholar 

  • Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19:225–268

    Article  PubMed  CAS  Google Scholar 

  • Brym P (2004) Identification of polymorphism within bovine PRL, PRLR and STAT5A genes. PhD Thesis. University of Warmia and Mazury, Olsztyn, Poland

  • Brym P, Kamiński S, Wójcik E (2005) Nucleotide sequence polymorphism within exon 4 of the bovine prolactin gene and its associations with milk performance traits. J Appl Genet 46:179–185

    PubMed  Google Scholar 

  • Camper SA, Yao YA, Rottman FM (1985) Hormonal regulation of the bovine prolactin promoter in rat pituitary tumor cells. J Biol Chem 260:12246–12251

    PubMed  CAS  Google Scholar 

  • Cheng CK, Yeung CM, Hoo RL, Chow BK, Leung PC (2002) Oct-1 is involved in the transcriptional repression of the gonadotropin-releasing hormone receptor gene. Endocrinology 143:4693–4701

    Article  PubMed  CAS  Google Scholar 

  • Chung ER, Rhim TJ, Han SK (1996) Associations between PCR–RFLP markers of growth hormone and prolactin genes and production traits in dairy cattle. Korean J Anim Sci 38:321–336

    CAS  Google Scholar 

  • Day RN, Liu J, Sundmark V, Kawecki M, Berry D, Elsholtz HP (1998) Selective inhibition of prolactin gene transcription by ETS-2 repressor factor. J Biol Chem 273:31909–31915

    Article  PubMed  CAS  Google Scholar 

  • Dybus A (2002) Associations of growth hormone (GH) and prolactin (PRL) genes polymorphisms with milk production traits in Polish black and white cattle. Anim Sci Pap Rep 20:203–212

    CAS  Google Scholar 

  • Dybus A, Grzesiak W, Kamieniecki H, Szatkowska I, Sobek Z, Błaszczyk P, Czerniawska-Piątkowska E, Zych S, Muszyńska M (2005) Association of genetic variants of bovine prolactin with milk production traits of Black-and-White and Jersey cattle. Arch Tierz 48:149–156

    CAS  Google Scholar 

  • Evans GA, David DN, Rosenfeld MG (1978) Regulation of prolactin and somatotropin mRNAs by thyroliberin. Proc Natl Acad Sci USA 75:1294–1298

    Article  PubMed  CAS  Google Scholar 

  • Flint DJ, Knight CH (1997) Interaction of prolactin and growth hormone (GH) in the regulation of mammary gland function and epithelial cell survival. J Mammary Gland Biol Neoplasia 2:41–48

    Article  PubMed  CAS  Google Scholar 

  • Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin, structure, function, and regulation of secretion. Physiol Rev 80:1523–1631

    PubMed  CAS  Google Scholar 

  • Gordon S, Akopyan G, Garban H, Bonavida B (2006) Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 25:1125–1142

    Article  PubMed  CAS  Google Scholar 

  • Hart GL, Bastiaansen J, Dentine MR, Kirkpatrick BW (1993) Detection of a four allele single strand conformation polymorphism (SSCP) in the bovine prolactin gene 5′ flank. Anim Genet 24:149

    Article  PubMed  CAS  Google Scholar 

  • Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, Smith F, Markoff E, Dorshkind K (1997) Defective mammopoiesis but normal hematopoiesis in mice with targeted disruption of the prolactin gene. EMBO J 16:6926–6935

    Article  PubMed  CAS  Google Scholar 

  • Jacobs KK, Stanley FM (1999) CCAAT/Enhacer binding protein α is a physiological regulator of prolactin gene expression. Endocrinology 140:4542–4550

    Article  Google Scholar 

  • Kanai N, Fujii T, Saito K, Yokoyama T (1994) Rapid and simple method for preparation of genomic DNA from easily obtained clotted blood. J Clin Pathol 47:1043–1044

    Article  PubMed  CAS  Google Scholar 

  • Knight CH (2001) Overview of prolactin’s role in farm animal lactation. Livestock Prod Sci 70:87–93

    Article  Google Scholar 

  • Klauzinska M. (2002) Polymorphism of 5′ flanking regions of PRL, GH, GHRH and MSTN genes in cattle. PhD Thesis. Institute of Animal Genetics and Breeding, Jastrzębiec, Poland

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Malewski T, Gajewska M, Zebrowska T, Zwierzchowski L (2002) Differential induction of transcription factors and expression of milk protein genes by prolactin and growth hormone in the mammary gland of rabbits. Growth Horm IGF Res 12:41–53

    Article  PubMed  CAS  Google Scholar 

  • Mariner PD, Luckey SW, Long CS, Sucharov CC, Leinwand LA (2005) Yin Yang 1 represses alpha-myosin heavy chain gene expression in pathologic cardiac hypertrophy. Biochem Biophys Res Commun 326:79–86

    Article  PubMed  CAS  Google Scholar 

  • Mayer CM, Cai F, Cui H, Gillespie JM, MacMillan M, Belsham DD (2003) Analysis of a repressor region in the human neuropeptide Y gene that binds Oct-1 and Pbx-1 in GT1–7 neurons. Biochem Biophys Res Commun 307:847–854

    Article  PubMed  CAS  Google Scholar 

  • Oprządek J, Flisikowski K, Zwierzchowski L, Dymnicki E (2003) Polymorphisms at loci of leptin (LEP), Pit1 and STAT5A and their association with growth, feed conversion and carcass quality in black-and-white bulls. Anim Sci Pap Rep 21:135–145

    Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770

    Article  PubMed  CAS  Google Scholar 

  • Ormandy Ch J, Camus A, Barra J, Damotte D, Lucas B, Buteau H, Edery M, Brousse N, Babinet Ch, Binart N, Kelly PA (1997) Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 11:167–178

    Article  PubMed  CAS  Google Scholar 

  • Quandt K, Frech K, Karas H, Wingender E, Werner T (1995) MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucl Acids Res 23:4878–4884

    Article  PubMed  CAS  Google Scholar 

  • Sasavage NL, Nilson JH, Horowitz S, Rottman FM (1982) Nucleotide sequence of bovine prolactin messenger RNA. Evidence for sequence polymorphism. J Biol Chem 257:678–681

    PubMed  CAS  Google Scholar 

  • Schug J, Overton ChG (1998) TESS—Transcription Element Search Software on the WWW. Technical Report. URL: http://www.cbil.upenn.edu/tess

  • Scully KM, Jacobson EM, Jepsen K, Lunyak V, Viadiu H, Carriere C, Rose DW, Hooshmand F, Aggarwal AK, Rosenfeld MG (2000) Allosteric effects of Pit-1 DNA sites on long-term repression in cell type specification. Science 290:1127–1131

    Article  PubMed  CAS  Google Scholar 

  • Schwachtgen JL, Remacle JE, Janel N, Brys R, Huylebroeck D, Meyer D, Kerbiriou-Nabias D (1998) Oct-1 is involved in the transcriptional repression of the von willebrand factor gene promoter. Blood 92:1247–1258

    PubMed  CAS  Google Scholar 

  • Stevens A, Ray DW, Worthington J, Davis JRE (2001) Polymorphism of the human prolactin gene—implications for production of lymphocyte prolactin and systemic lupus erythematosus. Lupus 10:676–683

    Article  PubMed  CAS  Google Scholar 

  • Zhang H.M., DeNise S.K., Ax R.L. (1994) Rapid communication: diallelic single-stranded conformational polymorphism detected in the bovine prolactin gene. J Anim Sci 72:256

    PubMed  CAS  Google Scholar 

  • Van de Weerdt C, Peers B, Belayew A, Martial JA, Muller M (2000) Far upstream sequences regulate the human prolactin promoter transcription. Neuroendocrinology 71:124–137

    Article  Google Scholar 

  • Wolf JB, David VA, Deutch AH (1990) Identification of a distal regulatory element in the 5′ flanking region of the bovine prolactin gene. Nucl Acids Res 18:4905–4912

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by UWM grant no. 0105–0804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Brym.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brym, P., Malewski, T., Starzyński, R. et al. Effect of New SNP Within Bovine Prolactin Gene Enhancer Region on Expression in the Pituitary Gland. Biochem Genet 45, 743–754 (2007). https://doi.org/10.1007/s10528-007-9115-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-007-9115-9

Keywords

Navigation