Skip to main content
Log in

A Widely Applicable Protocol for DNA Isolation from Fecal Samples

  • Original Paper
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Feces are increasingly used as sources of DNA for genetic and ecological research. This paper describes a new method for isolation of DNA from animal feces. This method combines multiple purification steps, including pretreatment with ethanol and TE, an inhibitor-absorber made of starch, the CTAB method, the phenol–chloroform extraction method, and the guanidinium thiocyanate-silica method. The new method is efficient according to PCR results of 585 fecal samples from 23 species and costs much less than the commercial kits. The protocol can be tailored to the specific purpose of examining different diets of animals and can be performed with routine laboratory reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  • Bianchini, F., Caderni, G., Dolara, P., Fantetti, L., and Kriebel, D. (1989). Effect of dietary fat, starch and cellulose on fecal bile acids in mice. J. Nutr. 119:1617–1624.

    PubMed  CAS  Google Scholar 

  • Cheah, P. Y., and Bernstein, H. (1990). Colon cancer and dietary fiber: Cellulose inhibits the DNA-damaging ability of bile acids. Nutr. Cancer 13:51–57.

    Article  PubMed  CAS  Google Scholar 

  • Constable, J. J., Packer, C., Colins, D. A., and Pusy, A. E. (1995). Nuclear DNA from primate dung. Nature 373:393.

    Article  PubMed  CAS  Google Scholar 

  • Deuter, R., Pietsch, S., Hertel, S., and Müller, O. (1995). A method for preparation of fecal DNA suitable for PCR. Nucleic Acids Res. 23:3800–3801.

    PubMed  CAS  Google Scholar 

  • Edwards, U., Rogall, T., Blocker, H., Emde, M., and Boettger, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes: Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17:7843–7853.

    PubMed  CAS  Google Scholar 

  • Eggert, L. S., Eggert J. A., and Woodruff, D. S. (2003). Estimating population sizes for elusive animals: The forest elephants of Kakum National Park, Ghana. Mol. Ecol. 12:1389–1402.

    Article  PubMed  CAS  Google Scholar 

  • Ernest, H. B., Penedo, M. C., May, B. P., Syvanen, M., and Boyce, W. M. (2000). Molecular tracking of mountain lions in the Yosemite valley region in California: Genetic analysis using microsatellites and fecal DNA. Mol. Ecol. 9:433–441.

    Article  PubMed  CAS  Google Scholar 

  • Fang, G., Hammar, S., and Grumet, R. A. (1992). Quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 13:52–54.

    PubMed  CAS  Google Scholar 

  • Fernando, P., Vidya, T. N. C., and Melnick, D. J. (2001). Isolation and characterization of tri- and tetranucleotide microsatellite loci in the Asian elephant, Elephas Maximus. Mol. Ecol. Notes 1:232–233.

    CAS  Google Scholar 

  • Frantz, A. C., Pope, L. C., Carpenter, P. J., Roper, T. J., Wilson, G. J., Delahay, R. J., and Burke, T. (2003). Reliable microsatellite genotyping of the Eurasian badger Meles meles using fecal DNA. Mol. Ecol. 12:1649–1661.

    Article  PubMed  CAS  Google Scholar 

  • Höss, M., and Pääbo, S. (1993). DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Res. 21:3913–3914.

    PubMed  Google Scholar 

  • Höss, M., Kohn, M., Pääbo, S., Knauer, F., and Schroder, W. (1992). Excrement analysis by PCR. Nature 359:199.

    Article  PubMed  Google Scholar 

  • Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32:128–144.

    Article  PubMed  CAS  Google Scholar 

  • Jones, A. S., and Walker, R. T. (1963). Isolation and analysis of the deoxyribonucleic acid of Mycoplasma mycoides var. Capri. Nature 198:588–589.

    Article  CAS  Google Scholar 

  • Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., and Villablanca, F. X. (1989). Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. U.S.A. 86:6196–6200.

    Article  PubMed  CAS  Google Scholar 

  • Kohn, M. H., and Wayne, R. K. (1997). Facts from feces revisited. TREE 12:223–327.

    Google Scholar 

  • Lantz, P. G., Tjerneld, F., Hahn-Hagerdal, B., and Radstrom, P. (1996). Use of aqueous two-phase systems in sample preparation for polymerase chain reaction-based detection of microorganisms. J. Chromatogr. B. Biomed. Appl. 680:165–170.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Gong, J., Cottrill, M., Yu, H., de Lange, C., Burton, J., and Topp, E. (2003). Evaluation of QIAampR DNA Stool Mini Kit for ecological studies of gut microbiota. J. Microbiol. Meth. 54:13–17.

    Google Scholar 

  • Lu, Z., Johnson, W. E., Menotti-Raymond, M., Yuhki, N., Martenson, J. S., Mainka, S., Huang, S. Q., Zheng, Z., Li, G., Pan, W., Mao, X., and O’Brien, S. J. (2001). Patterns of genetic diversity in remaining giant panda populations. Conserv. Biol. 15:1596–1607.

    Google Scholar 

  • Machiels, B. M., Ruers, T., Lindhout, M., Hlavaty, T., Bang, D. D., Somers, V. A. M. C., Baeten, C., von Meyenfeldt, M., and Thunnissen, F. B. J. M. (2000). New protocol for DNA extraction of stool. Biotechniques 28:286–290.

    Google Scholar 

  • Monteiro, L., Bonnemaison, D., Vekris, A., Petry, K. G., Bonnet, J., Vidal, R., Cabrita, J., and Mégraud, F. (1997). Complex polysaccharides as PCR inhibitors in feces: Helicobacter pyori model. J. Clin. Microbiol. 35:995–998.

    PubMed  CAS  Google Scholar 

  • Murphy, M. A., Waits, L. P., and Kendall, K. C. (2000). Quantitative evaluation of fecal drying methods for brown bear DNA analysis. Wildlife Soc. B 28:951–957.

    Google Scholar 

  • Reed, J. Z., Tollit, D. J., Thompson, P. M., and Amos, W. (1997). Molecular scatology: The use of molecular genetic analysis to assign species, sex and individual identity to seal feces. Mol. Ecol. 6:225–234.

    Google Scholar 

  • Taberlet, P., Griffin, S., Goossens, B., Questiau S., Manceau, V., Escaravage, N., Waits, L. P., and Bouvet, J. (1996). Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 24:3189–3194.

    Google Scholar 

  • Taberlet, P., and Luikart, G. (1999). Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 68:41–55.

    Google Scholar 

  • Walsh, P. S., Metzger, D. A., and Higuchi, R. (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was funded by the CAS Innovative Research International Partnership Project (CXTDS2005-4) and State Forestry Administration of China. Special thanks are given to Mr. Liu Zhijin, Ms. Zeng Yan, Ms. Zhang Fangfang, Mr. Zhu Lifeng, and Ms. Liu Qing for their lab work. We are also grateful to Dr. Zhang Zejun, who helped with sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Wen Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, BW., Li, M., Ma, LC. et al. A Widely Applicable Protocol for DNA Isolation from Fecal Samples. Biochem Genet 44, 494–503 (2006). https://doi.org/10.1007/s10528-006-9050-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-006-9050-1

KEY WORDS

Navigation