Skip to main content
Log in

Formulation of South African entomopathogenic nematodes using alginate beads and diatomaceous earth

  • Original Article
  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Large-scale use of entomopathogenic nematodes (EPNs) (Rhabditida: Steinernematidae and Heterorhabditidae) as biological control agents is impaired by their short shelf life. Three local South African EPN species, including Steinernema yirgalemense, S. jeffreyense and Heterorhabditis bacteriophora, were investigated for their role in formulations. Encapsulation of the infective juveniles (IJs) in alginate beads and diatomaceous earth (DE) was investigated. Survival of the IJs in the formulations was determined at 6 °C, 14 °C and 25 °C for four weeks. Of the IJs, 10-20% were observed to escape from the beads, depending on temperature, and readily survived the encapsulation process. DE did not cause the desiccation of the nematodes, with there still being a lower mortality rate by the 4th week of the study. In both formulations, the survival and virulence rates differed significantly at 6 °C, as compared to at 14 °C and 25 °C, with a drastic decrease over time for S. yirgalemense. The EPN species revealed poor survival and loss of virulence at low temperatures in both formulations. The alginate beads successfully retained most of the IJs and can be stored for a longer time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addis T, Mijušković N, Ehlers R-U, Strauch O (2016) Life history traits, liquid culture production and storage temperatures of Steinernema yirgalemense. Nematology 18:367–376

    Article  Google Scholar 

  • Akhurst R, Smith K (2002) Regulation and safety. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, pp 311–332

    Chapter  Google Scholar 

  • Akhurst RJ, Mourant RG, Baud L, Boemare NE (1996) Phenotypic and DNA relatedness between nematode symbionts and clinical strains of the genus Photorhabdus (Enterobacteriaceae). Int J Syst Bacteriol 46:1034–1041

    Article  CAS  PubMed  Google Scholar 

  • Boemare NE, Akhurst RJ, Mourant RG (1993) DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 43:249–255

    Article  CAS  Google Scholar 

  • Buchholz S, Merkel K, Spiewok S, Pettis JS, Duncan M, Spooner-Hart R, Ulrichs C, Ritter W, Neumann P (2009) Alternative control of Aethina tumida Murray (Coleoptera: Nitidulidae) with lime and diatomaceous earth. Apidologie 40:535–548

    Article  Google Scholar 

  • Chen S, Glazer I (2005) A novel method for long-term storage of the entomopathogenic nematode Steinernema feltiae at room temperature. Biol Control 32:104–110

    Article  CAS  Google Scholar 

  • Ehlers R-U (2007) Entomopathogenic nematodes: from science to commercial use. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective: case studies from around the world. CABI Publishing, Wallingford, pp 136–151

    Chapter  Google Scholar 

  • Golob P (1997) Current status and future perspectives for inert dusts for control of stored product insects. J Stored Prod Res 33:69–79

    Article  Google Scholar 

  • Grewal PS (2000a) Enhanced ambient storage stability of an entomopathogenic nematode through anhydrobiosis. Pest Manag Sci 56:401–406

    Article  CAS  Google Scholar 

  • Grewal PS (2000b) Anhydrobiotic potential and long-term storage of entomopathogenic nematodes (Rhabditida: Steinernematidae). Int J Parasitol 30:995–1000

    Article  CAS  PubMed  Google Scholar 

  • Grewal PS (2002) Formulation and application technology. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, pp 265–287

    Chapter  Google Scholar 

  • Grewal PS, Jagdale GB (2002) Enhanced trehalose accumulation and desiccation survival of entomopathogenic nematodes through cold preacclimation. Biocontrol Sci Tech 12:533–545

    Article  Google Scholar 

  • Grewal PS, Peters A (2005) Formulation and quality. In: Grewal PS, Ehlers R-U, Shapiro-Ilan DI (eds) Nematodes as biocontrol agents. CABI Publishing, Wallingford, pp 79–89

    Chapter  Google Scholar 

  • Hatting JL, Moore SD, Malan AP (2019) Microbial control of phytophagous invertebrate pests in South Africa: current status and future prospects. J Invertebr Pathol (in press). https://doi.org/10.1016/j.jip.2018.02.004

  • Hiltpold I, Hibbard BE, French BW, Turlings TCJ (2012) Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm. Plant Soil 358:11–25

    Article  CAS  Google Scholar 

  • Kagimu N, Ferreira T, Malan AP (2017) The attributes of survival in the formulation of entomopathogenic nematodes utilised as insect biocontrol agents. African Entomology 25:275–291

    Article  Google Scholar 

  • Kaya HK, Nelsen CE (1985) Encapsulation of steinernematid and heterorhabditid nematodes with calcium alginate: a new approach for insect control and other applications. Environ Entomol 14:572–574

    Article  Google Scholar 

  • Kaya HK, Stock SP (1997) Techniques in insect nematology. In: Lacey L (ed) Manual of techniques in insect pathology. Academic Press, San Diego, pp 281–324

    Chapter  Google Scholar 

  • Kaya HK, Mannion CM, Burlando TM, Nelsen CE (1987) Escape of Steinernema feltiae from alginate capsules containing tomato seeds. Journal of Nematology 19:287–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Jaffuel G, Turlings TCJ (2015) Enhanced alginate capsule properties as a formulation of entomopathogenic nematodes. BioControl 60:527–535

    Article  CAS  Google Scholar 

  • Malan AP, Hatting JL (2015) Entomopathogenic nematode exploitation: case studies in laboratory and field applications from South Africa. In: Campos-Herrera R (ed) Nematode pathogenesis of insects and other pests. Springer International Publishing, Dordrecht, pp 477–508

    Chapter  Google Scholar 

  • Malan AP, Knoetze R, Tiedt LR (2016) Steinernema jeffreyense n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from South Africa. J Helminthol 90:262–278

    Article  CAS  PubMed  Google Scholar 

  • Matadamas-Ortiz PT, Ruiz-Vega J, Vazquez-Feijoo JA, Cruz-Martinez H, Cortes-Martinez CI (2014) Mechanical production of pellets for the application of entomopathogenic nematodes: factors that determine survival time of Steinernema glaseri. Biocontrol Sci Technol 24:145–157

    Article  Google Scholar 

  • Navon A, Keren S, Salame L, Glazer I (1998) An edible-to-insects calcium alginate gel as a carrier for entomopathogenic nematodes. Biocontrol Sci Technol 8:429–437

    Article  Google Scholar 

  • Navon A, Nagalakshmi VK, Levski S, Salame L, Glazer I (2002) Effectiveness of entomopathogenic nematodes in an alginate gel formulation against lepidopterous pests. Biocontrol Sci Technol 12:737–746

    Article  Google Scholar 

  • Nguyen, Tesfamariam, Gozel, Gaugler, Adams (2004) Steinernema yirgalemense n. sp. (Rhabditida: Steinernematidae) from Ethiopia. Nematology 6:839–856

    Article  Google Scholar 

  • Odendaal D, Addison MF, Malan AP (2015) Control of codling moth (Cydia pomonella) (Lepidoptera: Tortricidae) in South Africa with special emphasis on using entomopathogenic nematodes. African Entomol 23:259–274

    Article  Google Scholar 

  • Odendaal D, Addison MF, Malan AP (2016) Entomopathogenic nematodes for the control of the codling moth (Cydia pomonella L.) in field and laboratory trials. J Helminthol 90:615–623

    Article  CAS  PubMed  Google Scholar 

  • Patel AV, Vorlop K-D (1994) Entrapment of biological control agents applied to entomopathogenic nematodes. Biotechnol Tech 8:569–574

    Article  CAS  Google Scholar 

  • Peters A (2004) Protocol quality assessment of entomopathogenic nematodes. COST Action 850 meeting programme and mushroom protocols. Wädenswil, Switzerland, pp 4–6

    Google Scholar 

  • Poinar GO (1975) Description and biology of a new insect parasite rhabditoid, Heterorhabditis bacteriophora n. gen. n. sp. (Rhabditida; Heterorhabditidae. fam.). Nematologica 21:463–470

    Article  Google Scholar 

  • Silver S, Dunlop D, Grove D (1995) WIPO Patent No. WO 95/0577. World Intellectual Property Organization, Geneva

  • Stuart RJ, Barbercheck ME, Grewal PS (2015) Entomopathogenic nematodes in the soil environment: distributions, interactions and the influence of biotic and abiotic factors. In: Campos-Herrera R (ed) Nematode pathogenesis of insects and other pests. Springer International Publishing, Dordrecht, pp 97–137

    Chapter  Google Scholar 

  • Surrey MR, Wharton DA (1995) Desiccation survival of the infective larvae of the insect parasitic nematode, Heterorhabditis zealandica Poinar. Int J Parasitol 25:749–752

    Article  CAS  PubMed  Google Scholar 

  • Thomas GM, Poinar GO (1983) Amended description of the genus Xenorhabdus Thomas and Poinar. Int J Syst Bacteriol 33:878–879

    Article  Google Scholar 

  • Travassos L (1927) Sobre o Genera Oxystomatium. Boletim Biologico, Sao Paula. Brasil 5:20–21

    Google Scholar 

  • van Zyl C, Malan AP (2015) Cost-effective culturing of Galleria mellonella and Tenebrio molitor and entomopathogenic nematode production in various hosts. African Entomol 23:361–375

    Article  Google Scholar 

  • Vemmer M, Patel AV (2013) Review of encapsulation methods suitable for microbial biological control agents. Biol Control 67:380–389

    Article  CAS  Google Scholar 

  • Wakil W, Riasat TM, Ghazanfar U, Kwon YJ, Shaheen FA (2011) Aptness of Beauveria bassiana and enhanced diatomaceous earth (DEBBM) for control of Rhyzopertha dominica F. Entomol Res 41:233–241

    Article  Google Scholar 

  • Womersley CZ (1990) Dehydration survival and anhydrobiotic potential. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press Inc, Boca Raton, pp 117–137

    Google Scholar 

  • Ziaee M, Atapour M, Marouf A (2016) Insecticidal efficacy of Iranian diatomaceous earths on adults of Oryzaephilus surinamensis. J Agric Sci Technol 18:361–370

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank D.G. Nel (Centre for Statistical Consultation, Stellenbosch University) for assistance with the statistical analyses. The financial support of NemaBio (Pty) (Ltd) and National Research Foundation (THRIP-TP14062571871) are greatly appreciated.

Funding

This study was funded by NemaBio (Pty) (Ltd) and National Research Foundation (Grant No. THRIP-TP14062571871).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoinette Paula Malan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

The research does not involve human participant or animals.

Additional information

Handling Editor: Ralf Ehlers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagimu, N., Malan, A.P. Formulation of South African entomopathogenic nematodes using alginate beads and diatomaceous earth. BioControl 64, 413–422 (2019). https://doi.org/10.1007/s10526-019-09945-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-019-09945-1

Keywords

Navigation