Skip to main content
Log in

Plectosphaerella cucumerina as a bioherbicide for Cirsium arvense: proof of concept

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Plectosphaerella cucumerina (Lindf.) W. Gams was evaluated as a bioherbicide for Cirsium arvense L. (Scop.) using a Canadian and a New Zealand isolate. Both isolates defoliated C. arvense when applied at 1013 conidia ha−1 in water volumes ranging from 250 to 6400 l ha−1 with a rapid decline in effect with declining conidial dose. Repeat application and the addition of the adjuvant Pulse® penetrant to the conidial suspension increased the disease severity in C. arvense. Maximum disease occurred at 20 °C with a 48 h post-application dew period. The experiments demonstrate that P. cucumerina can defoliate C. arvense under the environmental conditions of temperate pastures where the weed is problematic. The results also show that modifications to formulation and strategic application may reduce the 48 h dew period requirement and risk to non-target species respectively, supporting the conclusion that the fungus has potential as a bioherbicide for C. arvense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bailey KL, Falk S (2011) Turning research on microbial bioherbicides into commercial products—A Phoma story. Pest Technology 5 (Special Issue 1):73-79

  • Bailey KL, Carisse O, Leggett M, Holloway G, Leggett F, Wolf TM, Shivpuri A, Derby J, Caldwell B, Geissler HJ (2007) Effect of spraying adjuvants with the biocontrol fungus Microsphaeropsis ochracea at different water volumes on the colonization of apple leaves. Biocontrol Sci Tech 17:1021–1036

    Article  Google Scholar 

  • Berner D, Smallwood E, Cavin C, Lagopodi A, Kashefi J, Kolomiets T, Pankratova L, Mukhina Z, Cripps M, Bourdôt G (2013) Successful establishment of epiphytotics of Puccinia punctiformis for biological control of Cirsium arvense. Biol Control 67:350–360

    Article  Google Scholar 

  • Bourdôt GW, Saville DJ (2010) Bioherbicide safety zones and the plant disease-inoculum density relationship. Weed Technol 24:193–196

    Article  Google Scholar 

  • Bourdôt GW, Hurrell GA, Saville DJ, Leathwick DM (2006) Impacts of applied Sclerotinia sclerotiorum on the dynamics of a Cirsium arvense population. Weed Res 46:61–72

    Article  Google Scholar 

  • Bourdôt GW, Basse B, Cripps MG (2016) Mowing strategies for controlling Cirsium arvense in pasture in New Zealand compared using a matrix model. Ecol Evol 6:1–10

    Article  Google Scholar 

  • Bruton B, Miller M (1997) Occurrence of vine decline diseases of muskmelon in Guatemala. Plant Dis 81:694

    Article  Google Scholar 

  • Chung Y, Koo S, Kim H, Cho K (1998) Potential of an indigenous fungus, Plectosporium tabacinum, as a mycoherbicide for control of arrowhead (Sagittaria trifolia). Plant Dis 82:657–660

    Article  Google Scholar 

  • Cripps M, Gassmann A, Fowler SV, Bourdôt GW, McClay AS, Edwards G (2011) Classical biological control of Cirsium arvense: lessons from the past. Biol Control 57:165–174

    Article  Google Scholar 

  • Dillard HR, Cobb AC, Shah DA, Straight KE (2005) Identification and characterization of russet on snap beans caused by Plectosporium tabacinum. Plant Dis 89:700–704

    Article  Google Scholar 

  • Guske S, Schulz B, Boyle C (2004) Biocontrol options for Cirsium arvense with indigenous fungal pathogens. Weed Res 44:107–116

    Article  Google Scholar 

  • Hamdoun AM (1972) Regenerative capacity of root fragments of Cirsium arvense (L.) Scop. Weed Res 12:128–136

    Article  Google Scholar 

  • Heinmann B, Cussans GW (1996) The importance of seeds and sexual reproduction in the population biology of Cirsium arvense—a literature review. Weed Res 36:493–503

    Article  Google Scholar 

  • Hershenhorn J, Vurro M, Zonno MC, Stierle A, Strobel G (1993) Septoria cirsii, a potential biocontrol agent of Canada thistle and its phytotoxin—beta-nitropropionic acid. Plant Sci 94:227–234

    Article  CAS  Google Scholar 

  • Leth V, Netland J, Andreasen C (2008) Phomopsis cirsii: a potential biocontrol agent of Cirsium arvense. Weed Res 48:1–9

    Article  Google Scholar 

  • Palm ME, Gams W, Nirenberg HI (1995) Plectosporium, a new genus for Fusarium tabacinum, the anamorph of Plectosphaerella cucumerina. Mycologia 87:397–406

    Article  Google Scholar 

  • Sato T, Inaba T, Mori M, Watanabe K, Tomioka K, Hamaya E (2005) Plectosporium blight of pumpkin and ranunculus caused by Plectosporium tabacinum. J Gen Plant Pathol 71:127–132

    Article  Google Scholar 

  • Saville DJ, Rowarth JS (2008) Statistical measures, hypotheses, and tests in applied research. J Nat Resour Life Sci Educ 37:74–82

    Google Scholar 

  • Seifert KA (1996) Fungi Canadenses No. 333. Plectosporium tabacinum. Can J Plant Path 18:309–311

    Article  Google Scholar 

  • Skipp RA, Bourdôt GW, Hurrell GA, Chen LY, Wilson DJ, Saville DJ (2013) Verticillium dahliae and other pathogenic fungi in Cirsium arvense from New Zealand pastures: occurrence, pathogenicity and biological control potential. N. Z. J Agric Res 56:1–21

    Article  Google Scholar 

  • Smither-Kopperl M, Charudattan R, Berger R (1999) Plectosporium tabacinum, a pathogen of the invasive aquatic weed Hydrilla verticillata in Florida. Plant Dis 83:24–28

    Article  Google Scholar 

  • Tiley GED (2010) Biological flora of the British Isles: Cirsium arvense (L.) Scop. J Ecol 98:938–983

    Article  Google Scholar 

  • Vitale S, Maccaroni M, Belisario A (2007) First report of zucchini collapse by Fusarium solani f. sp. cucurbitae Race 1 and Plectosporium tabacinum in Italy. Plant Dis 91:325

    Article  Google Scholar 

  • Wood GR, Saville DJ (2013) A geometric examination of linear model assumptions. Aust N Z J Stat 55:285–303

    Article  Google Scholar 

  • Young S (2012) New Zealand Novachem Agrichemical Manual, vol 2012. Agrimedia Ltd, Christchurch

    Google Scholar 

  • Youssef Y, El-Tarabily K, Hussein A (2001) Plectosporium tabacinum root rot disease of white lupine (Lupinus termis Forsk.) and its biological control by Streptomyces species. J Phytopathol 149:29–33

    Article  Google Scholar 

  • Zazzerini A, Tosi L (1987) New sunflower disease caused by Fusarium tabacinum. Plant Dis 71:1043–1044

    Article  Google Scholar 

  • Zhang W, Sulz M, Bailey KL (2002a) Evaluation of Plectosporium tabacinum for control of herbicide-resistant and herbicide-susceptible false cleavers. Weed Sci 50:79–85

    Article  CAS  Google Scholar 

  • Zhang WM, Sulz M, Bailey KL, Cole DE (2002b) Effect of epidemiological factors on the impact of the fungus Plectosporium tabacinum on false cleavers (Galium spurium). BioControl Sci Tech 12:183–194

    Article  Google Scholar 

Download references

Acknowledgements

We thank Meat and Wool New Zealand (now Beef + Lamb New Zealand) and the Foundation for Research Science and Technology for funding Experiment 1 (under Projects 05AR/16 and C10X0811 respectively). We also thank the Ministry for Business, Innovation and Employment, New Zealand, for funding Experiments 4 and 5 (through AgResearch core funding) and Carolyn Lusk, AgResearch, for technical assistance. Experiments 2 and 3 were funded under Agriculture and Agri-Food Canada A-base research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Bourdôt.

Additional information

Handling Editor: S. Raghu.

Retired authors: Karen Bailey, Jo-Anne Derby, Geoff Hurrell, Bob Skipp

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailey, K., Derby, JA., Bourdôt, G. et al. Plectosphaerella cucumerina as a bioherbicide for Cirsium arvense: proof of concept. BioControl 62, 693–704 (2017). https://doi.org/10.1007/s10526-017-9819-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-017-9819-7

Keywords

Navigation