Skip to main content
Log in

Chitinolytic activity in Serratia marcescens (strain SEN) and potency against different larval instars of Spodoptera litura with effect of sublethal doses on insect development

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Chitinase-producing bacteria were isolated from diseased insect [Pieris brassicae Linnaeus (Lepidoptera: Pieridae) and Spodoptera litura Fabricius (Lepidoptera: Noctuidae)] cadavers. Serratia marcescens strain SEN showed highest enzyme production at temperature 27 °C and pH 9.0 and was selected for further studies. It possessed exochitinase, endochitinase and chitobiosidase activities, of which endochitinase was found to be the predominant chitinase. Serratia marcescens strain SEN showed insecticidal activity against all the developmental stages of S. litura larvae. Ingestion of sublethal doses of S. marcescens strain SEN led to a decrease in the larval and pupal weight, percent normal pupation, adult emergence and a significant increase of the larval period. Effect on fecundity and egg hatchability were studied at LC20 and LC50 doses. Fecundity was significantly reduced at both doses tested, while egg hatchability was significantly affected only at the highest dose. To our knowledge, this is the first report of the potential of an entomopathogenic S. marcescens strain against different developmental stages of S. litura. The tested S. marcescens strain SEN showed promise as a biocontrol agent of S. litura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Abdul-Sattar AA, Watson TF (1982) Effects of Bacillus thuringiensis var kurstaki on tabacco budworm (Lepidoptera: Noctuidae) adult and egg stage. J Econ Entomol 75:596–598

    Article  Google Scholar 

  • Aggarwal C, Paul S, Paul B, Khan MA, Tyagi SP (2014) A modified semi-synthetic diet for bioassay of non-spore forming entomopathogenic bacteria against Spodoptera litura. Biocontrol Sci Technol 24:1202–1205

    Article  Google Scholar 

  • Alotaibi SA (2013) Mortality responses of Spodoptera litura following feeding on BT- sprayed plants. J Basic Appl Sci 9:195–215

    CAS  Google Scholar 

  • Atlas RM (2004) Handbook of microbiological media. CRC Press, Boca Raton, USA

    Book  Google Scholar 

  • Barker JF (1998) Effect of Bacillus thuringiensis subsp. kurstaki toxin on the mortality and development of the larval stages of the banded sunflower moth (Lepidoptera: Cochylidae). J Econ Entomol 91:1084–1088

    Article  Google Scholar 

  • Boldo JT, Junges A, Amaral KBD, Staats CC, Vainstein MH, Schrank A (2009) Endochitinase CHI2 of the biocontrol fungus Metarhizium anisopliae and its virulence toward the cotton stainer bug Dysdercus peruvianus. Curr Genet 55:551–560

    Article  CAS  PubMed  Google Scholar 

  • Brurberg MB, Synstad B, Klemsdal SS, Aalten DMF, Sundheim L, Eijsink VGH (2001) Chitinases from Serratia marcescens. Recent Res Dev Microbiol 5:187–204

    CAS  Google Scholar 

  • Chandrasekaran R, Revathi K, Nisha S, Kirubakaran SA, Sathish-Narayanan S, Senthil-Nathan S (2012) Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab. Pest Biochem Physiol 104:65–71

    Article  CAS  Google Scholar 

  • Cosio IG, Fisher RA, Carroad PA (1982) Bioconversion of shellfish waste: waste pretreatment, enzyme production, process design, and economic analysis. J Food Sci 47:901–905

    Article  CAS  Google Scholar 

  • Deilamy A, Abbasipour H (2013) Comparative bioassay of different isolates of Bacillus thuringiensis subsp. kurstaki on the third larval instars of diamondback moth, Plutella xylostella (L.) (Lep.: Plutellidae). Arch Phytopathol Plant Prot 46:1480–1487

    Article  Google Scholar 

  • Delalibera I, Vasanthakumar A, Burwitz BJ, Schloss PD, Klepzig KD, Handelsman J, Raffa KF (2007) Composition of the bacterial community in the gut of the pine engraver, Ips pini (Say) (Coleoptera) colonizing red pine. Symbiosis 43:97–104

    CAS  Google Scholar 

  • Devi UK, Murali Mohan CH, Padmavathi J, Ramesh K (2003) Susceptibility to fungi of cotton boll worms before and after a natural epizootic of the entomopathogenic fungus Nomuraea rileyi (Hyphomycetes). Biocontrol Sci Technol 13:367–371

    Article  Google Scholar 

  • Erb SL, Bourchier RS, Frankenhuyzen KV, Smith SM (2001) Sublethal effects of Bacillus thuringiensis berliner subsp. kurstaki on Lymantria dispar (Lepidoptera: Lymantriidae) and the tachinid parasitoid Compsilura concinnata (Diptera: Tachinidae). Environ Entomol 30:1174–1181

    Article  Google Scholar 

  • Fang W, Leng B, Xiao Y, Jin K, Ma J, Fan Y, Feng J, Yang X, Zhang Y, Pei Y (2005) Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol 71:363–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilliland A, Chambers CE, Bone EJ, Ellar DJ (2002) Role of Bacillus thuringiensis Cry1 endotoxin binding in determining potency during lepidopteran larval development. Appl Environ Microbiol 68:1509–1515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S (2013) Chitinases: an update. J Pharm Bioallied Sci 5:21–29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harman GE, Hayes CK, Broadway RM, Pietro AD, Peterbauer C, Trosmo A (1993) Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83:313–318

    Article  CAS  Google Scholar 

  • Kandagal AS, Khetagoudar MC (2013) Study on larvicidal activity of weed extracts against Spodoptera litura. J Environ Biol 34:253–257

    PubMed  Google Scholar 

  • Khan S, Guo L, Maimaiti Y, Mijit M, Qiu D (2012) Entomopathogenic fungi as microbial biocontrol agent. Mol Plant Breed 3:63–79

    Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, UK, pp 155–175

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the Folin phenol reagents. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mejia-Saules JE, Waliszewski KN, Garcia MA, Cruz Camarillo R (2006) The use of crude shrimp shell powder for chitinase production by Serratia marcescens WF. Food Technol Biotechnol 44:95–100

    CAS  Google Scholar 

  • Melchers LS, Stuiver MH (2000) Novel genes for disease-resistance breeding. Curr Opin Plant Biol 3:147–152

    Article  CAS  PubMed  Google Scholar 

  • Moazami N (2008) Biopesticide production. In: Doelle HW, Rokem S (eds) Industrial biotechnology VI, Encyclopedia of life support systems (EOLSS), Eolss, Oxford, UK, pp 1–52

  • Mohan M, Sushil SN, Bhatt JC, Gujar GT, Gupta HS (2008) Synergistic interaction between sublethal doses of Bacillus thuringiensis and Campoletis chlorideae in managing Helicoverpa armigera. BioControl 53:375–386

    Article  Google Scholar 

  • Ohtakara A (1988) Chitosanase and β-N-acetyl hexosamine from Pycnosporus cinnabarinus. Method Enzymol 161:462–470

    Article  CAS  Google Scholar 

  • Pedersen A, Dedes J, Gauthier D, Frankenhuyzen VK (1997) Sublethal effect of Bacillus thuringiensis on the spruce budworm Choristoneura fumiferana. Entomol Exp Appl 83:253–262

    Article  Google Scholar 

  • Pietro AD, Lorito M, Hayes CK, Broadway RM, Harman GE (1993) Endochitinase from Gliocladium virens: isolation, characterization and synergistic antifungal activity in combination with gliotoxin. Mol Plant Pathol 83:308–313

    Google Scholar 

  • Regev A, Keller M, Strizhov N, Sneh B, Prudovsky E, Chet I, Ginzberg I, Koncz-Kalman Z, Koncz C, Schell J, Zilberstein A (1996) Synergistic activity of a Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62:3581–3586

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. J Gen Microbiol 134:169–176

    CAS  Google Scholar 

  • Salvadori JDM, Defferari MS, Ligabue-Braun R, Lau EY, Salvadori JR, Carlini CR (2012) Characterization of entomopathogenic nematodes and symbiotic bacteria active against Spodoptera frugiperda (Lepidoptera: Noctuidae) and contribution of bacterial urease to the insecticidal effect. Biol Control 63:253–263

    Article  Google Scholar 

  • St Leger RJ, Wang C (2009) Entomopathogenic fungi and the genomic era. In: Stock SP, Vandenberg J, Glazer I, Boemare N (eds) Insect pathogens: molecular approaches and techniques. CABI, Wallingford, UK, pp 365–400

    Chapter  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan B, Jackson TA, Hurst MR (2006) Virulence of Serratia strains against Costelytra zealandica. Appl Environ Microbiol 72:6417–6418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tran LB, Vachon V, Schwartz JI, Laprade R (2001) Differential effects of pH on the pore-forming properties of Bacillus thuringiensis insecticidal crystal toxins. Appl Environ Microbiol 67:4488–4494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaidya RJ, Macmil SLA, Vyas PR, Chhatpar HS (2003) The novel method for isolating chitinolytic bacteria and its application in screening for hyperchitinase producing mutant of Alcaligenes xylosoxydans. Lett Appl Microbiol 36:129–134

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Yan P, Cao L, Ding Q, Shao C, Zhao T (2013) Potential of chitinolytic Serratia marcescens strain JPP1 for biological control of Aspergillus parasiticus and aflatoxin. BioMed Res Int 397142:1–7

    Google Scholar 

  • Wu JH, Ali S, Ren SX (2010) Evaluation of chitinase from Metarhizium anisopliae as biopesticide against Plutella xylostella. Pak J Zool 42:521–528

    CAS  Google Scholar 

  • Xia JL, Xiong J, Zhang RY, Liu KK, Huang B, Nie ZY (2011) Production of chitinase and its optimization from a novel isolate Serratia marcescens XJ-01. Indian J Microbiol 51:301–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zaldívar M, Velásquez JC, Contreras I, Pérez LM (2001) Trichoderma aureoviride a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation and/or biocontrol. Environ Biotechnol 4:1–9

    Google Scholar 

Download references

Acknowledgments

The research work was funded by Department of Biotechnology, Ministry of Science and Technology, Government of India. Authors thank Dr. Shyamala S. Rajan, Chicago, USA for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Paul.

Additional information

Handling Editor: Nicolai Meyling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, C., Paul, S., Tripathi, V. et al. Chitinolytic activity in Serratia marcescens (strain SEN) and potency against different larval instars of Spodoptera litura with effect of sublethal doses on insect development. BioControl 60, 631–640 (2015). https://doi.org/10.1007/s10526-015-9674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-015-9674-3

Keywords

Navigation