Skip to main content
Log in

Acaricide toxicity and synergism of fenpyroximate to the coconut mite predator Neoseiulus baraki

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The non-target effects of acaricides, used against Aceria guerreronis (Acari: Eriophyidae) the coconut mite, on its natural enemies are not known. Therefore we assessed the susceptibility of A. guerreronis and its predator Neoseiulus baraki (Acari: Phytoseiidae) to selected acaricides, their impact on N. baraki rate of increase, and the synergism of fenpyroximate towards this predator. Toxicity bioassays and synergism of fenpyroximate (with piperonyl butoxide, triphenyl phosphate and diethyl maleate) were performed by spraying the mites under a Potter tower. The instantaneous rate of increase (r i ) was calculated ten days after spraying the predator. Chlorfenapyr and fenpyroximate were selective (both LC50 and LC90 were higher for N. baraki than for A. guerreronis) and did not affect the predator r i . Only piperonyl butoxide significantly synergized fenpyroximate suggesting the involvement of cytochrome P450 monooxygenase in the N. baraki tolerance. Fenpyroximate and chlorfenapyr are promising agents for managing A. guerreronis in combination with N. baraki because both are selective and do not affect its predator r i .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrofit (2013) Sistema de agrotóxicos Fitossanitários do Ministério da Agricultura, Pecuária e Abastecimento. http://extranet.agricultura.gov.br/agrofit_cons/principal_agrofit_cons

  • Anber HAI, Oppenoorth FJ (1989) A mutant esterase degrading organophosphates in a resistant strain of the predacious mite Amblyseius potentillae (Garman). Pestic Biochem Physiol 33:283–297

    Article  CAS  Google Scholar 

  • Aratchige NS, Sabelis MW, Lesna I (2007) Plant structural changes due to herbivory: do changes in Aceria-infested coconut fruits allow predatory mites to move under the perianth? Exp Appl Acarol 43:97–107

    Article  PubMed  Google Scholar 

  • Banks JE, Stark JD (1998) What is ecotoxicology? An ad-hoc grab bag or an interdisciplinary science? Interg Biol 5:195–204

    Article  Google Scholar 

  • Battsten LB, Holyoke CW Jr, Leeper JR, Raffa KF (1986) Insecticide resistance: challenge to pest management and basic research. Science 231:1255–1260

    Article  Google Scholar 

  • B-Bernard C, Philogene BJR (1993) Insecticide synergists: role, importance and perspectives. J Toxicol Environ Health 38:199–233

    Article  Google Scholar 

  • Bernardi D, Botton M, Cunha US, Bernardi O, Malausa T, Garcia MS, Nava DE (2013) Effects of azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and its compatibility with predatory mites (Acari: Phytoseiidae) on strawberry. Pest Manag Sci 69:75–80

    Article  CAS  PubMed  Google Scholar 

  • Brindley WA, Selim AA (1984) Synergism and antagonism in the analysis of insecticide resistance. Environ Ent 13:348–353

    CAS  Google Scholar 

  • Castagnoli M, Liguori M, Simoni S, Duso C (2005) Toxicity of some insecticides to Tetranychus urticae, Neoseiulus californicus and Tydeus californicus. BioControl 50:611–622

    Article  CAS  Google Scholar 

  • Cote KW, Lewis EE, Schultz PB (2002) Compatibility of acaricide residues with Phytoseiulus persimilis and their effects on Tetranychus urticae. HortScience 37:906–909

    CAS  Google Scholar 

  • Domingos CA, Melo JWS, Gondim MGC Jr, Moraes GJ, Hanna R, Lawson-Balagbo LM, Schausberger P (2010) Diet-dependent life history, feeding preference and thermal requirements of the predatory mite Neoseiulus baraki (Acari: Phytoseiidae). Exp Appl Acarol 50:201–215

    Article  PubMed  Google Scholar 

  • Duso C, Malagnini V, Pozzebon A, Castagnoli M, Liguori M, Simoni S (2008) Comparative toxicity of botanical and reduced-risk insecticides to mediterranean populations of Tetranychus urticae and Phytoseiulus persimilis (Acari Tetranychidae, Phytoseiidae). BioControl 47:16–21

    Google Scholar 

  • Fernando LCP, Waidyarathne KP, Perera KFG, Silva PHPR (2010) Evidence for suppressing coconut mite, Aceria guerreronis by inundative release of the predatory mite, Neoseiulus baraki. BioControl 53:108–111

    Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, London, UK

  • Fournier D, Cuany A, Pralavorio M, Bride JM, Berge JB (1987) Analysis of methidathion resistance mechanism in Phytoseiulus persimilis A.H. Pestic Biochem Physiol 28:271–278

    Article  CAS  Google Scholar 

  • Galvão AS, Gondim MGC Jr, Moraes GJ, Melo JWS (2011) Distribution of Aceria guerreronis and Neoseiulus baraki among and within coconut bunches in northeast Brazil. Exp Appl Acarol 54:373–384

    Article  PubMed  Google Scholar 

  • Gunning RV, Moores GD, Devonshire AL (1998) Inhibition of resistance-related esterase by piperonil butoxide in Helicoverpa armigera (Lepidoptera:Noctuidae) and Aphis gossypii (Hemiptera: Aphididae). In: Jones DB (ed) Pyperonil butoxide—the insecticide synergist, 1st edn. London, UK, pp 215–226

  • Hamedi N, Fathipour Y, Saber M (2010) Sublethal effects of fenpyroximate on life table parameters of the predatory mite Phytoseius plumifer. BioControl 55:271–278

    Article  CAS  Google Scholar 

  • Haq MA, Sumangala K, Ramani N (2002) Coconut mite invasion, injury and distribution. In: Fernando LCP, Moraes GJ, Wickramananda IR (eds) Proceedings of the international workshop on coconut mite (Aceria guerreronis). Coconut Research Institute, Sri Lanka, pp 41–49

    Google Scholar 

  • Hernandez RF (1977) Combate quimico del eriofiídeo del cocotero Aceria (Eriophyes) guerreronis (K) em la costa de Guerrero. Agric Tec Méx 4:23–28

    Google Scholar 

  • Ibrahim YB, Yee TS (2000) Influence of sublethal exposure to abamectin on the biological performance of Neoseiulus longispinosus (Acari: Phytoseiidae). J Econ Entomol 93:1085–1089

    Article  CAS  PubMed  Google Scholar 

  • IRAC (2009) Method n°4. Insecticide Resistance Action Committee

  • Irigaray FJS, Zalom FG, Thompson PB (2007) Residual toxicity of acaricides to Galendromus occidentalis and Phytoseiulus persimilis reproductive potential. Biol Control 40:153–159

  • Kammenga JE, Busschers M, van Straalen NM, Jepson PC, Bakker J (1996) Stress-induced fitness reduction is not determined by the most sensitive lifecycle trait. Funct Ecol 10:106–111

    Google Scholar 

  • Kasai S, Weerashinghe IS, Shono T (1998) P450 monoxygenases are an important mechanism of permethrin resistance in Culex quinquefasciatus Say larvae. Arch Insect Biochem Physiol 37:47–56

    Article  CAS  Google Scholar 

  • Kim YJ, Lee HS, Lee SW, Ahn YJ (2004) Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and biochemical resistance mechanisms. Pest Manag Sci 60:1001–1006

    Article  CAS  PubMed  Google Scholar 

  • Lawson-Balagbo LM, Gondim MGC Jr, Moraes GJ, Hanna R, Schausberger P (2007) Refuge use by the coconut mite Aceria guerreronis: fine scale distribution and association with other mites under the perianth. Biol Control 43:102–110

    Google Scholar 

  • Lawson-Balagbo LM, Gondim MGC Jr, Moraes GJ, Hanna R, Schausberger P (2008) Exploration of the acarine fauna on coconut palm in Brazil with emphasis on Aceria guerreronis (Acari: Eriophyidae) and its natural enemies. Bull Entomol Res 98:83–96

    Article  CAS  PubMed  Google Scholar 

  • LeOra-Software (2005) POLO-Plus, POLO for Windows computer program, version 2.0. By LeOra-Software, Petaluma, CA, USA

  • Lima DB, Melo JWS, Gondim MGC Jr, Moraes GJ (2012) Limitations of Neoseiulus baraki and Proctolaelaps bickleyi as control agents of Aceria guerreronis Keifer. Exp Appl Acarol 56:233–246

    Article  PubMed  Google Scholar 

  • Lima DB, Melo JWS, Guedes RNC, Siqueira HAA, Pallini A, Gondim Jr MGC (2013) Survival and behavioural response to acaricides of the coconut mite predator Neoseiulus baraki. Exp Appl Acarol. doi:10.1007/s10493-012-9644-8

  • Mariau D (1977) Aceria (Eriophyes) guerreronis: an important pest of African and American coconut groves. Oléagineux 32:109–111

    Google Scholar 

  • Mariau D (1986) Comportement de Eriophyes guerreronis Keifer à l'égard de différentes variétés de cocotiers. Oléagineux 41:499–505

    Google Scholar 

  • Mariau D, Tchibozo HM (1973) Essais de lutte chimique contre Aceria guerreronis (Keifer). Oléagineux 28:133–135

    CAS  Google Scholar 

  • Melo JWS, Lima DB, Pallini A, Oliveira JEM, Gondim MGC Jr (2011) Olfactory response of predatory mites to vegetative and reproductive parts of coconut palm infested by Aceria guerreronis. Exp Appl Acarol 55:191–202

    Article  PubMed  Google Scholar 

  • Melo JWS, Domingos CA, Pallini A, Oliveira JEM, Gondim MGC Jr (2012) Removal of bunches or spikelets is not effective for the control of Aceria guerreronis. HortScience 47:1–5

    Google Scholar 

  • Metcalf RL (1967) Mode of action of insecticide synergists. Annu Rev Entomol 12:229–256

    Article  CAS  PubMed  Google Scholar 

  • Monteiro VB, Lima DB, Gondim MGC Jr, Siqueira HAA (2012) Residual bioassay to assess the toxicity of acaricides against Aceria guerreronis (Acari: Eriophyidae) under laboratory conditions. J Econ Entomol 105:1419–1425

    Article  CAS  PubMed  Google Scholar 

  • Moore D, Alexander L (1990) Resistance of coconut in St. Lucia to attack by the coconut mite Eriophyes guerreronis Keifer. Trop Agric 67:33–36

    Google Scholar 

  • Moore D, Howard FW (1996) Coconuts. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. Elsevier, Amsterdam, The Netherlands pp 561–570

  • Moore D, Alexander L, Hall RA (1989) The coconut mite, Eriophyes guerreronis Keifer in St Lucia yield losses and attempts to control it with acaricide, polybutene e Hirsutella fungus. Trop Pest Manag 35:83–89

    Article  CAS  Google Scholar 

  • Motoyama N, Dauterman WC, Rock GC (1977) Toxicity of O-alkyl analogues of azinphosmethyl and other insecticides to resistant and susceptible predaceous mites, Amblyseius fallacis. J Econ Entomol 70:475–476

    CAS  Google Scholar 

  • Mullin CA, Croft BA, Strickler K, Matsumura F, Miller JR (1982) Detoxification enzyme differences between a herbivorous and predatory mite. Science 217:1270–1272

    Article  CAS  PubMed  Google Scholar 

  • Nair CPR (2002) Status of eriophyid mite Aceria guerreronis Keifer in India. In: Fernando LCP, Moraes GJ, Wickramananda IR (eds) Proceedings of the international workshop on coconut mite (Aceria guerreronis). Coconut Research Institute, Sri Lanka, pp 9–12

    Google Scholar 

  • Negloh K, Hanna R, Schausberger P (2011) The coconut mite, Aceria guerreronis, in Benin and Tanzania: occurrence, damage and associated acarine fauna. Exp Appl Acarol 55:361–374

    Article  CAS  PubMed  Google Scholar 

  • Omoto C, Alves EB, Ribeiro PC (2000) Detecção e monitoramento da resistência de Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) ao dicofol. An Soc Entomol Bras 29:757–764

    Article  CAS  Google Scholar 

  • Ramaraju K, Natarajan K, Babu PCS, Palnisamy S, Rabindra RJ (2002) Studies on coconut eriophyid mite, Aceria guerreronis Keifer in Tamil Nadu, Índia. In: Fernando LCP, Moraes GJ, Wickramananda IR (eds) Proceedings of the international workshop on coconut mite (Aceria guerreronis). Coconut Research Institute, Sri Lanka, pp 13–31

    Google Scholar 

  • Reis AC, Gondim MGC Jr, Moraes GJ, Hanna R, Schausberger P, Lawson-Balagbo LM, Barros R (2008) Population dynamics of Aceria guerreronis Keifer (Acari: Eriophyidae) and associated predators on coconut fruits in northeastern Brazil. Neotrop Entomol 37:457–462

    Article  PubMed  Google Scholar 

  • Robertson JL, Preisler HK (1992) Pesticide bioassays with arthropods. CRC Press, Boca Raton, USA

  • Robertson JL, Rapparport NG (1979) Direct, indirect, and residual toxicities of insecticide sprays to western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae). Can Entomol 111:1219–1226

    Article  CAS  Google Scholar 

  • Roseleen SSJ, Ramaraju K (2012) Acaricidal effects and residues of profenofos and abamectin on the nut-infesting eriophyid mite, Aceria guerreronis Keifer (Acari: Prostigmata) on coconut. Int J Acarol 38:465–470

    Article  Google Scholar 

  • Roush RT, Plapp FW Jr (1982) Biochemical genetics of resistance to aryl carbamate insecticides in the predaceous mite, Metaseiulus occidentalis. J Econ Entomol 75:304–307

    CAS  Google Scholar 

  • SAS Institute (2002) SAS/STAT User’s guide, version 8.02, TS level 2MO. SAS Institute Inc., Cary, USA, NC

  • Sato ME, Miyata T, Kawai A, Nakano O (2001) Methidathion resistance mechanisms in Amblyseius womersleyi Schicha (Acari: Phytoseiidae). Pestic Biochem Physiol 69:1–12

    Article  CAS  Google Scholar 

  • Scott JA (1990) Investigating mechanism of insecticide resistance: methods, strategies, and pitfalls. In: Tabashnick BE, Roush BE (eds) Pesticide resistance in arthropods. Chapman & Hall, New York, USA, pp 39–57

  • Stark JD, Jepson PC, Mayer D (1995) Limitations to the use of topical toxicity data for predictions of pesticide side-effects in the field. J Econ Entomol 88:1081–1088

    CAS  Google Scholar 

  • Stark JD, Tanigoshi L, Bounfour M, Antonelli A (1997) Reproductive potential: its influence on the susceptibility of a species to pesticides. Ecotoxicol Environ Safety 37:273–279

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen T, Vontas J, Tsagkarakou A, Dermauwa W, Tirry L (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40:563–572

    Google Scholar 

  • van Pottelberge S, van Leeuwen T, Nauen R, Tirry L (2009) Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull Entomol Res 99:23–31

    Google Scholar 

  • Vinson SB, Law PK (1971) Cuticular composition and DDT resistance in the tobacco budworm. J Econ Entomol 64:1387–1390

    CAS  PubMed  Google Scholar 

  • Walthall WK, Stark JD (1997) Comparison of two population level ecotoxicological endpoints: the intrinsic (rm) and instantaneous (ri) rates of increase. Environ Toxicol Chem 16:1068–1073

    Google Scholar 

  • Yu SJ (2008) Principles of pesticide metabolism. In: Yu SJ (ed) The toxicology and biochemistry of insecticides. CRC Press, Boca Raton, USA, pp 143–168

Download references

Acknowledgments

We are grateful to the following Brazilian institutions for their financial support: CAPES Foundation of the Brazilian Ministry of Education, Pernambuco State Foundation for Research Aid (FACEPE) and National Council of Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. C. Gondim Jr..

Additional information

Handling Editor: Nicolai Meyling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, D.B., Monteiro, V.B., Guedes, R.N.C. et al. Acaricide toxicity and synergism of fenpyroximate to the coconut mite predator Neoseiulus baraki . BioControl 58, 595–605 (2013). https://doi.org/10.1007/s10526-013-9520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-013-9520-4

Keywords

Navigation