Skip to main content
Log in

Persistence and effect of Metarhizium anisopliae in the fungal community of sugarcane soil

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The persistence of Metarhizium anisopliae (Metschnikoff) Sorokin URM5951 in soil of sugarcane crop and the effect of introducing it in the structure of the fungal community were checked, using the colony-forming units and the PCR–DGGE techniques. A suspension of conidia was sprayed on the surface of the soil obtained from the field. The experiment was carried out in vases, each one containing 3 kg of soil, in which a sugarcane seedling was introduced and maintained in greenhouse. Soil samples were collected at 15, 30, 60 and 90 days after the fungus was applied. Soil fungal DNA was PCR amplified using the primer pair FR1GC and FF390, giving fragments of the 18S rDNA. A high level of similarity was observed between the samples inoculated with M. anisopliae and the control samples in every sampling time studied. Isolate URM5951 showed persistence up to 60 days and did not interfere in the soil fungal community in the conditions tested, with these being desirable characteristics in the process of selecting entomopathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alves SB (1998) Fungos entomopatogênicos. In: Alves SB (ed) Controle microbiano de insetos. FEALQ, Piracicaba, Brazil, pp 289–370

    Google Scholar 

  • Alves SB, Leite LG, Batista Filho A, Almeida JEM, Marques EJ (2008) Produção massal de fungos entomopatogênicos na América Latina. In: Alves SB, Lopes RB (eds) Controle microbiano de pragas na América Latina: avanços e desafios, FEALQ, Piracicaba, Brazil, pp 215-234

  • Assigbetse K, Gueye M, Thioulouse J, Duponnois R (2005) Soil bacterial diversity responses to root colonization by an ectomycorrhizal fungus are not root-growth-dependent. Microb Ecol 50:350–359

    Article  PubMed  Google Scholar 

  • Coelho ASG (2005) BOOD 3.04: Avaliação de dendrogramas baseados em estimativas de distâncias/similaridades genéticas através do procedimento de bootstrap. UFG, Goiânia, Brazil

  • Correa GS, Azevedo JL (1986) Efeito do solo na germinação de conídios de Metarhizium anisopliae (Metsch.) Sorokin. O solo 78:39–41

    Google Scholar 

  • Correa OS, Montecchia MS, Berti MF, Ferrari MCF, Pucheu NL, Kerber NL, García AF (2009) Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Appl Soil Ecol 41:185–194

    Article  Google Scholar 

  • Costa PMO, Souza-Motta CM, Malosso E (2012) Diversity of filamentous fungi in different systems of land use. Agroforest Syst. doi:10.1007/s10457-011-9446-8

    Google Scholar 

  • Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249

    Article  PubMed  CAS  Google Scholar 

  • Enkerli J, Widmer F (2010) Molecular ecology of fungal entomopathogens: molecular genetic tools and their applications in population and fate studies. BioControl 55:17–37

    Article  Google Scholar 

  • Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA- based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  PubMed  CAS  Google Scholar 

  • Guerra DMS, Pires AND, Luna-Alves Lima EA (2009) Persistence of Metarhizium anisopliae spp in soil under different conditions of temperature and humidity. Rev Caatinga 22:18–22

    Google Scholar 

  • Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E (2005a) Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb Ecol 50:277–288

    Google Scholar 

  • Herschkovitz Y, Lerner A, Davidov Y, Okon Y, Jurkevitch E (2005b) Azospirillum brasilense does not affect population structure of specific rhizobacterial communities of inoculated maize (Zea mays). Environ Microbiol 7:1847–1852

    Article  PubMed  CAS  Google Scholar 

  • Kessler P, Enkerli J, Schweizer C, Keller S (2004) Survival of Beauveria brongniartii in the soil after application as a biocontrol agent against the European cockchafer Melolontha melolontha. BioControl 49:563–581

    Article  Google Scholar 

  • Lanza LM, Monteiro AC, Malheiros EB (2004) Metarhizium anisopliae population in different soil types and compactness degrees. Cienc Rural 34:1757–1762

    Article  Google Scholar 

  • Malosso E, Waite IS, English L, Hopkins DW, O’Donnell AG (2006) Fungal diversity in maritime Antarctic soils determined using a combination of culture isolation, molecular fingerprinting and cloning techniques. Polar Biol 29:552–561

    Article  Google Scholar 

  • Marschner P, Crowley DE, Lieberei R (2001) Arbuscular mycorrhizal infection changes the bacterial 16S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302

    Article  CAS  Google Scholar 

  • Martins JFS, Botton M, Carbonari JJ, Quintela ED (2004) Efficiency of Metarhizium anisopliae on rice stem bug Tibraca limbativentris (Heteroptera: Pentatomidae) control in flooded in rice field. Cienc Rural 34:1681–1688

    Article  Google Scholar 

  • Michereff Filho M, Faria M, Wraight SP, Silva KFAS (2009) Mycoinsecticides and mycoacaricides in Brazil: how are we after four decades? Arq Inst Biol 76:769–779

    Google Scholar 

  • Mitchell JI, Zuccaro A (2006) Sequences, the environment and fungi. Mycologist 20:62–74

    Article  Google Scholar 

  • Monteiro RTR, Frighetto RTS (2000) Determinação da umidade, pH e capacidade de retenção de água do solo. In: Frighetto RTS, Valarini PJ (Coord) Indicadores biológicos e bioquímicos da qualidade do solo: manual técnico. Embrapa Meio Ambiente, Jaguariúna, Documento, Brazil 21:37–39

  • Pilz C, Enkerli J, Wegensteiner R, Keller S (2011) Establishment and persistence of the entomopathogenic fungus Metarhizium anisopliae in maize fields. J Appl Entomol 135:393–403

    Article  Google Scholar 

  • Rohlf FJ (2000) NTSYS-PC Numerical taxonomy and multivariate analysis system. Manual. Applied Biostatistics. Inc, New York, USA

  • Schwarzenbach K, Enkerli J, Widmer F (2009) Effects of biological and chemical insect control agent on fungal community structures in soil microcosms. Appl Soil Ecol 42:54–62

    Article  Google Scholar 

  • Silva FAS; Azevedo CAV (2009) Principal Components Analysis in the software Assistant-Statistical Assistance. In: World Congress on Computers in Agriculture, 7, Reno-NV-USA. American Society of Agricultural and Biological Engineers, USA

  • Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernard K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621

    Google Scholar 

  • Tiago PV, Souza HML, Moysés JB, Oliveira NT, Luna-Alves Lima EA (2011) Differential pathogenicity of Metarhizium anisopliae and the control of the sugarcane root spittlebug Mahanarva fimbriolata. Braz Arch Biol Technol 54:435–440

    Google Scholar 

  • Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936

    Article  CAS  Google Scholar 

  • Wamberg C, Christensen S, Jakobsen I, Müller AK, Sørensen SJ (2003) The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 35:1349–1357

    Article  CAS  Google Scholar 

  • Wang GH, Jin J, Xu MN, Pan XW, Tang C (2007) Inoculation with phosphate-solubilizing fungi diversifies the bacterial community in rhizospheres of maize and soybean. Pedosphere 17:191–199

    Article  CAS  Google Scholar 

  • Xavier GR, Zilli JE, Rumjanek NG (2004) Estudo da comunidade microbiana do solo através de clonagem, eletroforese em géis desnaturantes (DGGE/TGGE) e conformação de fita simples do DNA (SSCP). Soropédica: Embrapa Agrobiologia, Documento, Brazil 172, 28p

  • Zhang B, Bai Z, Hoefel D, Tang L, Yang Z, Zhuang G, Yang J, Zhang H (2008) Assessing the impact of the biological control agent Bacillus thuringiensis on the indigenous microbial community within the pepper plant phyllosphere. FEMS Microbiol Lett 284:102–108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by the Coordination for the Training of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES), (Doctorate grant given to the first author) and the National Council for Technical and Scientific Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico–CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Vieira Tiago.

Additional information

Handling Editor: Helen Roy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieira Tiago, P., Porto Carneiro-Leão, M., Malosso, E. et al. Persistence and effect of Metarhizium anisopliae in the fungal community of sugarcane soil. BioControl 57, 653–661 (2012). https://doi.org/10.1007/s10526-012-9445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-012-9445-3

Keywords

Navigation