Skip to main content

Advertisement

Log in

Importance of temperature for the performance and biocontrol efficiency of the parasitoid Perilitus brevicollis (Hymenoptera: Braconidae) on Salix

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

With the prospect of warmer temperatures as a consequence of ongoing climate change, it is important to investigate how such increases will affect parasitoids and their top-down suppression of herbivory in agroecosystems. Here we studied how the performance and biocontrol efficiency of the willow “bodyguard” Perilitus brevicollis Haliday (Hymenoptera: Braconidae) were affected at different constant temperatures (10, 15, 20, 25°C) when parasitizing a pest insect, the blue willow beetle (Phratora vulgatissima L., Coleoptera: Chrysomelidae). Parasitism did not reduce herbivory at all at 10°C, indicating poor biocontrol efficiency at low temperatures. At higher temperatures, however, parasitism reduced herbivory substantially, implying that biocontrol may be promoted by a warmer climate. Parasitoid performance (survival and development rate) generally increased with increasing temperature up to 20°C. The only exception was body size, which followed the temperature–size rule and decreased with increasing temperature. Our results indicate that a warmer climate may enhance the biocontrol of the blue willow beetle in environments that currently are cooler than the parasitoid’s optimal temperature for development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agboka K, Tounou AK, Al-Moaalem R, Poehling H-M, Raupach K, Borgemeister C (2004) Life-table study of Anagrus atomus, an egg parasitoid of the green leafhopper Empoasca decipiens, at four different temperatures. BioControl 49:261–275

    Article  Google Scholar 

  • Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. University of Chicago Press, Chicago, USA

    Google Scholar 

  • Angilletta MJ Jr, Dunham AE (2003) The temperature–size rule in ectotherms: simple evolutionary explanations may not be general. Am Nat 162:332–342

    Article  PubMed  Google Scholar 

  • Atkinson D (1994) Temperature and organism size—A biological law for ectotherms? Adv Ecol Res 25:1–58

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Article  Google Scholar 

  • Björkman C, Bengtsson B, Häggström H (2000) Localized outbreak of a willow leaf beetle: Plant vigor or natural enemies? Popul Ecol 42:91–96

    Article  Google Scholar 

  • Björkman C, Dalin P, Eklund K (2003) Generalist natural enemies of a willow leaf beetle (Phratora vulgatissima): abundance and feeding habits. J Insect Behav 16:747–764

    Article  Google Scholar 

  • Brière JF, Pracros P (1998) Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lepidoptera: Tortricidae). Environ Entomol 27:94–101

    Google Scholar 

  • Burnett T (1951) Effects of temperature and host density on the rate of increase of an insect parasite. Am Nat 85:337–352

    Article  Google Scholar 

  • Butler CD, Trumble JT (2010) Predicting population dynamics of the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae) resulting from novel interactions of temperature and selenium. Biocontrol Sci Technnol 20:391–406

    Article  Google Scholar 

  • Coley PD (1998) Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Clim Change 39:455–472

    Article  Google Scholar 

  • Dalin P (2011) Diapause induction and termination in a commonly univoltine leaf beetle (Phratora vulgatissima). Insect Sci 18:443–450

    Article  Google Scholar 

  • Gilbert N, Raworth DA (1996) Insects and temperature—a general theory. Can Entomol 128:1–13

    Article  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, USA

    Google Scholar 

  • Häggström H, Larsson S (1995) Slow larval growth on a suboptimal willow results in high predation mortality in the leaf beetle Galerucella lineola. Oecologia 104:308–315

    Article  Google Scholar 

  • Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126

    Article  PubMed  CAS  Google Scholar 

  • Harrington R, Fleming RA, Woiwod IP (2001) Climate change impacts on insect management and conservation in temperate regions: Can they be predicted? Agric For Entomol 3:233–240

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Summary for policymakers. WMO and UNEF, Geneva, Switzerland

  • Jalali MA, Tirry L, De Clercq P (2010) Effect of temperature on the functional response of Adalia bipunctata to Myzus persicae. BioControl 55:261–269

    Article  Google Scholar 

  • Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evol Ecol Res 10:251–268

    Google Scholar 

  • Landsberg J, Smith M (1992) A functional scheme for predicting the outbreak potential of herbivorous insects under global atmospheric change. Aust J Bot 40:565–577

    Article  Google Scholar 

  • Le Lann C, Wardziak T, van Baaren J, van Alphen JJM (2011) Thermal plasticity of metabolic rates linked to life-history traits and foraging behaviour in a parasitic wasp. Funct Ecol 25:641–651

    Article  Google Scholar 

  • Llácer E, Urbaneja A, Garrido A, Jacas J-A (2006) Temperature requirements may explain why the introduced parasitoid Quadrastichus citrella failed to control Phyllocnistis citrella in Spain. BioControl 51:439–452

    Article  Google Scholar 

  • Logan JA (1988) Toward an expert system for development of pest simulation models. Environ Entomol 17:359–376

    Google Scholar 

  • Maure F, Brodeur J, Ponlet N, Doyon J, Firlej A, Elguero É, Thomas F (2011) The cost of a bodyguard. Biol Lett 7:843–846

    Article  PubMed  Google Scholar 

  • Peacock L, Herrick S, Brain P (1999) Spatio-temporal dynamics of willow beetle (Phratora vulgatissima) in short-rotation coppice willows grown as monocultures or a genetically diverse mixture. Agric For Entomol 1:287–296

    Article  Google Scholar 

  • Rueda LM, Patel KJ, Axtell RC, Stinner RE (1990) Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol 27:892–898

    PubMed  CAS  Google Scholar 

  • Sandhu HS, Nuessly GS, Webb SE, Cherry RH, Gilbert RA (2010) Temperature-dependent development of Elasmopalpus lignosellus (Lepidoptera: Pyralidae) on sugarcane under laboratory conditions. Environ Entomol 39:1012–1020

    Article  PubMed  Google Scholar 

  • Sibly RM, Atkinson D (1994) How rearing temperature affects optimal adult size in ectotherms. Funct Ecol 8:486–493

    Article  Google Scholar 

  • Steinbauer MJ, Kriticos DJ, Lukacs Z, Clarke AR (2004) Modelling a forest lepidopteran: phenological plasticity determines voltinism which influences population dynamics. Forest Ecol Manag 198:117–131

    Article  Google Scholar 

  • Stenberg JA (2012) Plant-mediated effects of different Salix species on the performance of the braconid parasitoid Perilitus brevicollis. Biol Control 60:54–58

    Article  Google Scholar 

  • Thomson LJ, Macfadyen S, Hoffmann AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52:296–306

    Article  Google Scholar 

  • Tun-Lin W, Burkot TR, Kay BH (2000) Effects of temperature and larval diet on development rates and survival of the Dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 14:31–37

    Article  PubMed  CAS  Google Scholar 

  • Wu GM, Barrette M, Boivin G, Brodeur J, Giraldeau LA, Hance T (2011) Temperature influences the handling efficiency of an aphid parasitoid through body size-mediated effects. Environ Entomol 40:737–742

    Article  PubMed  Google Scholar 

  • Zandi-Sohani N, Shishehbor P (2011) Temperature effects on the development and fecundity of Encarsia acaudaleyrodis (Hymenoptera: Aphelinidae), a parasitoid of Bemisia tabaci (Homoptera: Aleyrodidae) on cucumber. BioControl 56:257–263

    Article  Google Scholar 

Download references

Acknowledgment

This study was funded by the Swedish Research Council Formas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan A. Stenberg.

Additional information

Handling Editor: Dirk Babendreier

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baffoe, K.O., Dalin, P., Nordlander, G. et al. Importance of temperature for the performance and biocontrol efficiency of the parasitoid Perilitus brevicollis (Hymenoptera: Braconidae) on Salix . BioControl 57, 611–618 (2012). https://doi.org/10.1007/s10526-012-9443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-012-9443-5

Keywords

Navigation