Skip to main content
Log in

The negative effect of some selective insecticides on the functional response of a potential biological control agent, the spider Philodromus cespitum

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The impact of five selective insecticides on the functional response of a potential biological control agent, the spider Philodromus cespitum (Walckenaer) (Araneae: Philodromidae), was studied in the laboratory. This spider is the most abundant beneficial arthropod on trees in commercial orchards in central Europe. We expected that selective insecticides applied at the recommended doses would have no effect or a negligible effect on the spiders’ performance. Our results showed that the mortality of spiders resulting from residual uptake of the chemicals differed among insecticides. Dimilin, NeemAzal, Mospilan, and Integro caused mortality of less than 10%, while SpinTor caused mortality of 17%. All five preparations can be considered harmless in terms of mortality in comparison with Decis, which caused 80% mortality. Exposure to residues of NeemAzal, SpinTor, and Dimilin resulted in a significantly lower predation rate than the control. The lowest predation rate was observed in spiders treated with SpinTor. These results imply that the natural pest control provided by P. cespitum spiders can be weakened by the application of SpinTor, NeemAzal, and Dimilin. On the other hand, the functional response was not significantly affected by the application of Integro and Mospilan. Therefore, these two insecticides are recommended for use in the integrated pest management (IPM) of orchards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albert R, Bogenschütz H (1984) Prüfung der Wirkung von Pflanzenbehandlungsmitteln auf die Nutzarthropode Coelotes terrestris (Wider) (Araneida, Agelenidae) mit Hilfe eines Glasplattentests. Anz Schädlingskd Pfl 57:111–117

    Article  CAS  Google Scholar 

  • Ambrose DP, Rajan SJ, Kumar AG (2008) Impact of insecticide Synergy-505 on the functional response of a non-target reduviid predator Rhynocoris marginatus (Fabricius) (Heteroptera: Reduviidae) feeding on Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). J Biol Control 22:283–290

    Google Scholar 

  • Anonymous (2008) [List of plant protection products]. State Phytosanitary Administration, Czech Republic (in Czech)

  • Basedow T, Rzehak H, Voß K (1985) Studies on the effect of deltamethrin sprays on the numbers of epigeal predatory arthropods occurring in arable fields. Pestic Sci 16:325–331

    Article  CAS  Google Scholar 

  • Beltramin da Fonseca PR, Bertoncello TF, Ribeiro JF, Fernandes MG, Degrande PE (2008) Selectivity of insecticides to natural enemies on soil cultivated with cotton. Pesqui Agropecu Trop 38:304–309

    Google Scholar 

  • Bogya S, Markó V, Szinetár CS (1999) Comparison of pome fruit orchard inhabiting spider assemblages at different geographical scales. Agr For Entomol 1:261–269

    Article  Google Scholar 

  • Casas J, Hulliger B (1994) Statistical analysis of functional response experiments. Biocontrol Sci Technol 4:133–145

    Article  Google Scholar 

  • Cisneros J, Goulson D, Derwent LC, Penagos DI, Hernández O, Williams T (2002) Toxic effects of spinosad on predatory insects. Biol Control 23:156–163

    Article  CAS  Google Scholar 

  • Claver MA, Ravichandran B, Khan MM, Ambrose DP (2003) Impact of cypermethrin on the functional response, predatory and mating behaviour of a non-target potential biological control agent Acanthaspis pedestris (Stål) (Het., Reduviidae). J Appl Entomol 127:18–22

    Article  CAS  Google Scholar 

  • De Clercq P, De Cock A, Tirry L, Viñuela E, Degheele D (1995) Toxicity of diflubenzuron and pyriproxyfen to the predatory bug Podisus maculiventris. Entomol Exp Appl 74:17–22

    Article  Google Scholar 

  • Delbeke P, Vercruysse L, Tirry L, De Clercq P, Degheele D (1997) Toxicity of diflubenzuron, pyriproxyfen, imidacloprid and diafenthiuron to the predatory bug Orius laevigatus (Het.: Anthocoridae). Entomophaga 42:349–358

    Article  CAS  Google Scholar 

  • Deng L, Dai J, Cao H, Xu M (2007) Effects of methamidophos on the predating behavior of Hylyphantes graminicola (Sundevall) (Araneae: Linyphiidae). Environ Toxicol Chem 26:478–482

    Article  CAS  PubMed  Google Scholar 

  • Dhadialla TS, Jansson RK (1999) Non-steroidal ecdysone agonists: new tools for IPM and insect resistance management. Pestic Sci 55:357–359

    Article  CAS  Google Scholar 

  • Everts JW, Aukema B, Mullié WC, van Gemerden A, Rottier A, van Katz R, van Gestel CAM (1991) Exposure of the ground dwelling spider Oedothorax apicatus (Blackwall) (Erigonidae) to spray and residues of deltamethrin. Arch Environ Contam Toxicol 20:13–19

    Article  Google Scholar 

  • Foelix RF (1996) Biology of spiders, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Gu DJ (1991) Influence of sublethal dose of insecticides on the foraging behavior of Diaeretiella rapae. Acta Ecol Sin 11:324–329

    Google Scholar 

  • Hardman JM, Turnbull AL (1974) The interaction of spatial heterogeneity, predator competition and the functional response to prey density in a laboratory system of wolf spiders (Araneae: Lycosidae) and fruit flies (Diptera: Drosophilidae). J Anim Ecol 43:155–171

    Article  Google Scholar 

  • Hassan SA, Albert R, Bigler F, Blaisinger P, Bogenschütz H, Boller E, Brun J, Chiverton P, Edwards P, Englert WD, Huang P, Inglesfield C, Naton E, Oomen PA, Overmeer WPJ, Rieckmann W, Samsøe-Petersen L, Stäubli A, Tuset JJ, Viggiani G, Vanwetswinkel G (1987) Results of the third joint pesticide testing programme by the IOBC/WPRS—working group “Pesticides and Beneficial Organisms”. Z Angew Entomol 103:92–107

    Article  CAS  Google Scholar 

  • Haynes DL, Sisojevic P (1966) Predatory behavior of Philodromus rufus Walckenaer (Araneae: Thomisidae). Can Entomol 98:113–133

    Article  Google Scholar 

  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Article  Google Scholar 

  • Holling CS (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 45:1–60

    Google Scholar 

  • Jebanesan A (1998) Sublethal effect of etofenprox (Trebon) on the predation of Culex quinquefasciatus (Say) by Diplonychus indicus (Venk. and Rao.). Indian J Environ Toxicol 8:33–34

    Google Scholar 

  • Jiang Y, Zhang ZN, Niu CY, Deng JH, Lei CL (2002) Effects of avermectin on the suppression of the peach aphid, Myzus persicae, by Orius similis. Acta Entomol Sin 45:215–220

    CAS  Google Scholar 

  • Kajak A (1978) An analysis of consumption by spiders under laboratory and field conditions. Ekol Pol 26:409–427

    Google Scholar 

  • Kim DS, Brooks DJ, Riedl H (2006) Lethal and sublethal effects of abamectin, spinosad, methoxyfenozide and acetamiprid on the predaceous plant bug Deraeocoris brevis in the laboratory. BioControl 51:465–484

    Article  CAS  Google Scholar 

  • Li DX, Tian J, Shen ZR (2006) Effects of pesticides on the functional response of predatory thrips, Scolothrips takahashii to Tetranychus viennensis. J Appl Entomol 130:314–322

    Article  CAS  Google Scholar 

  • Luckey TD (1963) Antibiotic action in adaptation. Nature 198:263–265

    Article  CAS  PubMed  Google Scholar 

  • Mahdian K, Van Leeuwen T, Tirry L, De Clercq P (2007) Susceptibility of the predatory stinkbug Picromerus bidens to selected insecticides. BioControl 52:765–774

    Article  CAS  Google Scholar 

  • Mansour F, Rosen D, Shulov A (1981) Disturbing effect of a spider on larval aggregations of Spodoptera littoralis. Entomol Exp Appl 29:234–237

    Article  Google Scholar 

  • Mansour F, Heimbach U, Wehling A (1992) Effects of pesticide residues on ground-dwelling lycosid and micryphantid spiders in laboratory tests. Phytoparasitica 20:195–202

    Article  CAS  Google Scholar 

  • Maupin JL, Riechert SE (2001) Superfluous killing in spiders: a consequence of adaptation to food-limited environments? Behav Ecol 12(5):569–576

    Article  Google Scholar 

  • Moura R, Garcia P, Cabral S, Soares AO (2006) Does pirimicarb affect the voracity of the euriphagous predator, Coccinella undecimpunctata L. (Coleoptera: Coccinellidae)? Biol Control 38:363–368

    Article  CAS  Google Scholar 

  • Musser FR, Shelton AM (2003) Bt sweet corn and selective insecticides: impacts on pests and predators. J Econ Entomol 96:71–80

    Article  CAS  PubMed  Google Scholar 

  • Myers L, Liburd OE, Arevalo HA (2006) Survival of Geocoris punctipes Say (Hemiptera: Lygaeidae) following exposure to selected reduced-risk insecticides. J Entomol Sci 41:57–64

    CAS  Google Scholar 

  • Nentwig W (1989) Augmentation of beneficial arthropods by strip-management. II. Successional strips in a winter wheat field. J Plant Dis Prot 96:89–99

    Google Scholar 

  • Nentwig W, Hänggi A, Kropf C, Blick T (2009) Spinnen Mitteleuropas/Central European Spiders—determination key. Version 8.12.2003. Available online at: http://www.araneae.unibe.ch

  • Nowak JT, McCravy KW, Fettig CJ, Berisford CW (2001) Susceptibility of adult hymenopteran parasitoids of the Nantucket pine tip moth (Lepidoptera: Tortricidae) to broad-spectrum and biorational insecticides in a laboratory study. J Econ Entomol 94:1122–1127

    Article  CAS  PubMed  Google Scholar 

  • Nyffeler M, Benz G (1987) Spiders in natural pest control: a review. J Appl Entomol 103:321–339

    Article  Google Scholar 

  • Nyffeler M, Breene RG (1990) Evidence of low daily food consumption by wolf spiders in meadowland and comparison with other cursorial hunters. J Appl Entomol 110:73–81

    Article  Google Scholar 

  • Oaten A, Murdoch WW (1975) Switching, functional response, and stability in predator–prey systems. Am Nat 109:299–318

    Article  Google Scholar 

  • Paul AVN, Thygarajan KS (1992) Toxicity of pesticides to natural enemies of crop pests in India. In: David BV (ed) Pest management and pesticides: Indian scenario. Narmrutha Publications, Madras, pp 158–176

    Google Scholar 

  • Pekár S (1998) Effect of selective insecticides on the beneficial spider community of a pear orchard in the Czech Republic. In: Selden PA (ed) Proceedings of the 17th European colloquium of arachnology, Edinburgh, 14–18 July 1997, pp 337–342

  • Pekár S (1999) Effect of IPM practices and conventional spraying on spider population dynamics in an apple orchard. Agric Ecosyst Environ 73:155–166

    Article  Google Scholar 

  • Pekár S (2002) Susceptibility of the spider Theridion impressum to 17 pesticides. J Pest Sci 75:51–55

    Google Scholar 

  • Pekár S, Beneš J (2008) Aged pesticide residues are detrimental to agrobiont spiders (Araneae). J Appl Entomol 132:614–622

    Article  Google Scholar 

  • Perry WB, Christiansen TA, Perry SA (1997) Response of soil and leaf litter microarthropods to forest application of diflubenzuron. Ecotoxicology 6:87–99

    Article  CAS  Google Scholar 

  • Peveling R, Demba SA (1997) Virulence of the entomopathogenic fungus Metarhizium flavoviride Gams and Rozsypal and toxicity of diflubenzuron, fenitrothion-esfenvalerate and profenofos-cypermethrin to nontarget arthropods in Mauritania. Arch Environ Contam Toxicol 32:69–79

    Article  CAS  PubMed  Google Scholar 

  • Poletti M, Maia AHN, Omoto C (2007) Toxicity of neonicotinoid insecticides to Neoseiulus californicus and Phytoseiulus macropilis (Acari: Phytoseiidae) and their impact on functional response to Tetranychus urticae (Acari: Tetranychidae). Biol Control 40:30–36

    Article  CAS  Google Scholar 

  • Qi B, Gordon G, Gimme W (2001) Effects of neem-fed prey on the predacious insects Harmonia conformis (Boisduval) (Coleoptera: Coccinellidae) and Mallada signatus (Schneider) (Neuroptera: Chrysopidae). Biol Control 22:185–190

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Riechert SE, Bishop L (1990) Prey control by an assemblage of generalist predators: spiders in garden test systems. Ecology 71:1441–1450

    Article  Google Scholar 

  • Riechert SE, Harp JM (1987) Nutritional ecology of spiders. In: Slansky F Jr, Rodriguez JG (eds) Nutritional ecology of insects, mites, spiders, and related invertebrates. Wiley, New York, pp 645–672

    Google Scholar 

  • Riechert SE, Lockley T (1984) Spiders as biological control agents. Annu Rev Entomol 29:299–320

    Article  Google Scholar 

  • Riechert SE, Luczak J (1982) Spider foraging: behavioral responses to prey. In: Witt PN, Rovner JS (eds) Spider communication: mechanisms and ecological significance. Princeton University Press, Princeton, pp 353–385

    Google Scholar 

  • Smith RB, Wellington WG (1983) The functional response of a juvenile orb-weaving spider. In: Eberhard WG, Lubin YD, Robinson BC (eds) Proceedings of the 9th international congress of arachnology, Panama. Smithsonian Institution Press, Washington, pp 275–279

  • Stark JD, Jepson PC, Thomas CFG (1995) The effects of pesticides on spiders from the lab to the landscape. Rev Pestic Toxicol 3:83–110

    CAS  Google Scholar 

  • Stebbing ARD (1982) Hormesis—the stimulation of growth by low levels of inhibitors. Sci Total Environ 22:213–234

    Article  CAS  PubMed  Google Scholar 

  • Studebaker GE, Kring TJ (2003) Effects of insecticides on Orius insidiosus (Hemiptera: Anthocoridae), measured by field, greenhouse and Petri dish bioassays. Fla Entomol 86:178–185

    Article  CAS  Google Scholar 

  • Sunderland KD, Fraser AM, Dixon AFG (1986) Distribution of linyphiid spiders in relation to capture of prey in cereal fields. Pedobiologia 29:367–375

    Google Scholar 

  • Tomlin CDS (2000) The pesticide manual, 12th edn. British Crop Protection Council, Farnham

    Google Scholar 

  • Vargas RI, Peck SL, McQuate GT, Jackson CG, Stark JD, Armstrong JW (2001) Potential for areawide integrated management of Mediterranean fruit fly (Diptera: Tephritidae) with a braconid parasitoid and a novel bait spray. J Econ Entomol 94:817–825

    Article  CAS  PubMed  Google Scholar 

  • Vickerman GP, Sunderland KD (1977) Some effects of dimethoate on arthropods in winter wheat. J Appl Ecol 14:767–777

    Article  CAS  Google Scholar 

  • Viñuela E, Adán A, Smagghe G, González M, Medina MP, Budia F, Vogt H, Del Estal P (2000) Laboratory effects of ingestion of azadirachtin by two pests (Ceratitis capitata and Spodoptera exigua) and three natural enemies (Chrysoperla carnea, Opius concolor and Podisus maculiventris). Biocontrol Sci Technol 10:165–177

    Article  Google Scholar 

  • Wang XY, Shen ZR (2002) Effects of sublethal doses of insecticides on predation of multicolored Asian ladybird, Harmonia axyridis (Pallas). Acta Ecol Sin 22:2278–2284

    Google Scholar 

  • Wang Z, Song DX, Zhu MS (2006) Functional response and searching behavior to the brown planthopper, Nilaparvata lugens by the wolf spider, Pardosa pseudoannulata under low-dose chemical pesticides. Acta Entomol Sin 49:295–301

    CAS  Google Scholar 

  • Wise DH (1975) Food limitation of the spider Linyphia marginata: experimental field studies. Ecology 56:637–646

    Article  Google Scholar 

  • Wise DH (1993) Spiders in ecological webs. Cambridge studies in ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wise DH, Wagner JD (1992) Evidence of exploitative competition among young stages of the wolf spider Schizocosa ocreata. Oecologia 91:7–13

    Google Scholar 

Download references

Acknowledgments

We thank Patrick De Clercq for his comments on the manuscript. This research was supported by grant no. 1G58081 of the Ministry of Agriculture of the Czech Republic. SP was also supported by project no. 0021622416 of the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Řezáč.

Additional information

Handling Editor: Patrick De Clercq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Řezáč, M., Pekár, S. & Stará, J. The negative effect of some selective insecticides on the functional response of a potential biological control agent, the spider Philodromus cespitum . BioControl 55, 503–510 (2010). https://doi.org/10.1007/s10526-010-9272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-010-9272-3

Keywords

Navigation