Skip to main content
Log in

Heat tolerance among different strains of the entomopathogenic nematode Heterorhabditis bacteriophora

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Quality of biological control products based on entomopathogenic nematodes can be severely damaged due to exposure to high temperature surpassing 40°C. The study screened 36 natural populations and 18 hybrid or inbred strains of Heterorhabditis bacteriophora for their response to high temperature. Nematodes were tested with or without prior adaptation to heat at 35°C for 3 h. Five strains of H. indica and one of H. megidis were also included. Molecular identification using nuclear ribosomal DNA sequences confirmed the designation to the three Heterorhabditis spp. The mean tolerated temperature ranged from 33.3°C to 40.1°C for non-adapted and from 34.8°C to 39.2°C for adapted strain populations. H. indica was the most tolerant, followed by H. bacteriophora and H. megidis. No correlation was recorded between tolerance assessed with and without adaptation to heat, implying that different genes are involved. Correlation between heat tolerance and mean annual temperature at place of origin of the strains was weak. A high variability in tolerance among strains and the relatively high heritability (h² = 0.68) for the adapted heat tolerance recorded for H. bacteriophora provide an excellent foundation for future selective breeding with the objective to enhance heat tolerance of H. bacteriophora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berner M, Ehlers R-U, Schnetter W (2001) Genetic variability and discrimination of isolates, inbred lines and hybrids of Heterorhabditis bacteriophora via RAPD-PCR. In: 34th annual meeting of the society of invertebrate pathology. Noordwijkerhout, p 7

  • Ciche T (2007) The biology and genome of Heterorhabditis bacteriophora. In: WormBook (ed) The C. elegans research community. http://www.wormbook.org/chapters/www_genomesHbacteriophora/genomesHbacteriophora.html

  • Ciche TA, Darby C, Ehlers R-U, Forst S, Goodrich-Blair H (2006) Dangerous liaisons: the symbiosis of entomopathogenic nematodes and bacteria. Biol Control 38:22–46

    Article  Google Scholar 

  • Curran J, Gilbert C, Butler K (1992) Routine cryopreservation of Steinernema and Heterorhabditis spp. J Nematol 24:1–3

    Google Scholar 

  • Dowds BCA, Peters A (2002) Virulence mechanisms. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, UK, pp 79–98

    Chapter  Google Scholar 

  • Dutky SR, Thompson JV, Cantwell GE (1962) A technique for mass rearing the greater wax moth (Lepidopera: Galleriidae). Proc Ent Soc Wash 64:56–58

    CAS  Google Scholar 

  • Ehlers R-U (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56:623–633

    Article  CAS  PubMed  Google Scholar 

  • Ehlers R-U (2003) Biocontrol nematodes. In: Hokkanen HMT, Hajek AE (eds) Environmental impacts of microbial insecticides. Kluwer Academic Publishers, The Netherlands, pp 177–220

    Google Scholar 

  • Ehlers R-U, Oestergaard J, Hollmer S, Wingen M, Strauch O (2005) Genetic selection for heat tolerance and low temperature activity of the entomopathogenic nematode-bacterium complex Heterorhabditis bacteriophora-Photorhabdus luminescens. BioControl 50:699–716

    Article  Google Scholar 

  • Glazer I (2002) Survival biology. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, UK, pp 169–187

    Chapter  Google Scholar 

  • Glazer I, Gaugler R, Segal D (1991) Genetics of the entomopathogenic nematode Heterorhabditis bacteriophora (strain HP88): the diversity of beneficial traits. J Nematol 23:324–333

    CAS  PubMed  Google Scholar 

  • Grewal PS, Gaugler R, Kaya HK, Wusaty M (1993) Infectivity of the entomopathogenic nematode Steinernema scapterisci (Nematoda: Steinernamatidae). J Invertebr Pathol 62:22–28

    Article  Google Scholar 

  • Grewal PS, Selvan S, Gaugler R (1994) Thermal adaptation of entomopathogenic nematodes: Niche breadth for infection, establishment and reproduction. J Thermal Biol 19:245–253

    Article  Google Scholar 

  • Grewal PS, Wang X, Taylor RAJ (2002) Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: is there a relationship? Int J Parasitol 32:717–725

    Article  CAS  PubMed  Google Scholar 

  • Grewal PS, Ehlers R-U, Shapiro-Ilan DI (2005) Nematodes as biocontrol agents. CABI International, UK

    Book  Google Scholar 

  • Grewal PS, Bornstein-Forst S, Burnell AM, Glazer I, Jagdale GB (2006) Physiological, genetic, and molecular mechanisms of chemoreception, thermobiosis, and anhydrobiosis in entomopathogenic nematodes. Biol Contr 38:54–65

    Article  CAS  Google Scholar 

  • Griffin CR, Downes MJ (1991) Low temperature activity in Heterorhabditis sp. (Nematoda: Heterorhabditidae). Nematologica 37:83–91

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Han R, Ehlers R-U (2000) Pathogenicity, development and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. J Invertebr Pathol 75:55–58

    Article  CAS  PubMed  Google Scholar 

  • Hashmi GS, Hashmi S, Selvan S, Grewal PS, Gaugler R (1997) Polymorphism in heat shock protein gene (hsp70) in entomopathogenic nematodes (Rhabditida). J Therm Biol 22:143–149

    Article  CAS  Google Scholar 

  • Jagdale GB, Grewal PS, Salminen SO (2005) Both heat-shock and cold-shock influence trehalose metabolism in an entomopathogenic nematode. J Parasitol 91:988–994

    Article  CAS  PubMed  Google Scholar 

  • Johnigk SA, Hollmer S, Strauch O, Wyss U, Ehlers R-U (2002) Heritability of the liquid culture mass production potential of the entomopathogenic nematode Heterorhabditis bacteriophora. Biocontrol Sci Technol 12:267–276

    Article  Google Scholar 

  • Joyce SA, Burnell AM, Powers TO (1994) Characterization of Heterorhabditis isolates by PCR amplification of segments of mtDNA and rDNA genes. J Nematol 26:260–270

    CAS  PubMed  Google Scholar 

  • Koppenhöfer AM (2000) Nematodes. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Kluwer Academic Press, The Netherlands, pp 283–301

    Google Scholar 

  • Kung SP, Gaugler R, Kaya HK (1991) Effects of soil temperature, moisture and relative humidity on entomopathogenic nematode persistence. J Invertebr Pathol 57:242–249

    Article  Google Scholar 

  • Molyneux AS (1986) Heterorhabditis spp. and Steinernema (=Neoaplectana) spp.: temperature and aspects of behaviour and infectivity. Exp Parasit 62:169–180

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KB (2007) Methodology, morphology and identification. In: Nguyen KB, Hunt DJ (eds) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Hunt DJ, Perry RN (Series eds) Nematology monographs and perspectives, Brill NV, The Netherlands, pp 59–119

  • Nguyen KB, Hunt DJ (2007) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Hunt DJ, Perry RN (Series eds) Nematology monographs and perspectives, Brill NV, The Netherlands

  • Selvan S, Grewal PS, Leustek T, Gaugler R (1996) Heat shock enhances thermotolerance of infective juvenile insect-parasitic nematodes Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae). Experientia 52:727–730

    Article  CAS  PubMed  Google Scholar 

  • Somasekhar N, Grewal PS, Klein MG (2002) Genetic variability in stress tolerance and fitness among natural populations of Steinernema carpocapsae. Biol Control 23:303–310

    Article  Google Scholar 

  • Strauch O, Niemann I, Neumann A, Schmidt AJ, Peters A, Ehlers R-U (2000) Storage and formulation of the entomopathogenic nematodes Heterorhabditis indica and H. bacteriophora. BioControl 45:483–500

    Article  Google Scholar 

  • Strauch O, Oestergaard J, Hollmer S, Ehlers R-U (2004) Genetic improvement of the desiccation tolerance of the entomopathogenic nematode Heterorhabditis bacteriophora through selective breeding. Biol Control 31:218–226

    Article  Google Scholar 

  • Susurluk A, Ehlers R-U (2008) Field persistence of the entomopathogenic nematode Heterorhabditis bacteriophora in different crops. BioControl 53:627–641

    Article  Google Scholar 

  • Swofford DL (1998) PAUP, phylogenetic analysis using parsimony and other methods. Version 4. Sinauer Associates, Sunderland, MA, p 128

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows inference: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acid Res 24:4876–4882

    Article  Google Scholar 

  • White F (1927) A method for obtaining infective juveniles from cultures. Science 66:1666–1670

    Article  Google Scholar 

  • Wright PJ (1992) Cool temperature reproduction of steinernematid and heterorhabditid nematodes. J Invertebr Pathol 60:148–151

    Article  Google Scholar 

  • Wright DJ, Peters A, Schroer S, Fife JP (2005) Application technology. In: Grewal PS, Ehlers R-U, Shapiro-Ilan DI (eds) Nematodes as biocontrol agents. CABI Publishing, UK, pp 91–106

    Chapter  Google Scholar 

Download references

Acknowledgments

Thanks are due to all colleagues, who kindly provided nematode strains and to Berhanu Hunegnaw Kassahun for technical support with the molecular identification. The scholarship to the first author by the German Academic Exchange Service (http://www.daad.de) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf-Udo Ehlers.

Additional information

Handling Editor: Eric Wajnberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukuka, J., Strauch, O., Waeyenberge, L. et al. Heat tolerance among different strains of the entomopathogenic nematode Heterorhabditis bacteriophora . BioControl 55, 423–434 (2010). https://doi.org/10.1007/s10526-009-9255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-009-9255-4

Keywords

Navigation