Skip to main content

Advertisement

Log in

Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The use of fungal entomopathogens as microbial control agents has driven studies into their ecology in crop ecosystems. Yet, there is still a lack of understanding of the ecology of these insect pathogens in semi-natural habitats and communities. We review the literature on prevalence of fungal entomopathogens in insect populations and highlight the difficulties in making such measurements. We then describe the theoretical host-pathogen models available to examine the role that fungal entomopathogens could play in regulating insect populations in semi-natural habitats, much of the inspiration for which has been drawn from managed systems, particularly forests. We further emphasise the need to consider the complexity, and particularly the heterogeneity, of semi-natural habitats within the context of theoretical models and as a framework for empirical studies. We acknowledge that fundamental gaps in understanding fungal entomopathogens from an ecological perspective coupled with a lack of empirical data to test theoretical predictions is impeding progress. There is an increasing need, especially under current rapid environmental change, to improve our understanding of the role of fungi in insect population dynamics beyond the context of forestry and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbot KC, Dwyer G (2007) Food limitation and insect outbreaks: complex dynamics in plant-herbivore models. J Anim Ecol 76:1004–1014

    Google Scholar 

  • Abbot KC, Moriss WF, Gross K (2008) Simultaneous effects of food limitation and inducible resistance on herbivore population dynamics. Theor Popul Biol 73:63–78

    Google Scholar 

  • Anderson RM, May RM (1981) The population dynamics of microparasites and their invertebrate hosts. Philos Trans R Soc B 291:451–524

    Google Scholar 

  • Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85:411–426

    PubMed  Google Scholar 

  • Arthurs S, Thomas MB (2001) Effects of temperature and relative humidity on sporulation of Metarhizium anisopliae var. acridum in mycosed cadavers of Schistocerca gregaria. J Invertebr Pathol 78:59–65

    CAS  PubMed  Google Scholar 

  • Balazy S (1993) Flora of Poland, Fungi (Mycota), Vol. XXIV Entomophthorales. Polish Academy of Sciences

  • Balmford A, Bennun L, ten Brink B, Cooper D, Côté IM, Crane P, Dobson A, Dudley N, Dutton I, Green RE, Gregory R, Harrison J, Kennedy ET, Kremen C, Leader-Williams N, Lovejoy T, Mace G, May R, Mayaux P, Phillips J, Redford K, Ricketts TH, Rodriguez JP, Sanjayan M, Schei P, van Jaarsveld A, Walther BA (2005) Science and the convention on biological diversity’s 2010 target. Science 307:212–213

    CAS  PubMed  Google Scholar 

  • Baverstock J, Roy HE, Clark SJ, Alderson PG, Pell JK (2006) Effect of fungal infection on reproductive potential of aphids and their progeny. J Invertebr Pathol 91:136–139

    CAS  PubMed  Google Scholar 

  • Baverstock J, Clark SJ, Pell JK (2008) Effect of seasonal abiotic conditions and field margin habitat on the activity of Pandora neoaphidis inoculum on soil. J Invertebr Pathol 97:282–290

    CAS  PubMed  Google Scholar 

  • Bidochka M, Kamp AM, Lavender TM, Dekoning J, de Croos JNA (2001) Habitat associated in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: uncovering cryptic species? Appl Environ Microb 67:1335–1342

    CAS  Google Scholar 

  • Bitton S, Kenneth RG, Ben-Ze’ev I (1979) Zygospore overwintering and sporulative germination in Triplosporium fresenii (Entomopthoraceae) attacking Aphis spriaecola on citrus in Israel. J Invertebr Pathol 34:295–302

    Google Scholar 

  • Blackwell M (2009) Fungal evolution and taxonomy. BioControl. doi:10.1007/s10526-009-9243-8 (this SI)

  • Boots M, Begon M (1993) Trade-offs with resistance to a granulosis virus in the India meal moth, examined by a laboratory evolution experiment. Func Ecol 7:528–534

    Google Scholar 

  • Boots M, Greenman J, Ross D, Norman R, Hails R, Sait S (2003) The population dynamical implications of covert infections in host-microparasite interactions. J Anim Ecol 72:1064–1072

    Google Scholar 

  • Bowers RG, Begon M, Hodgkinson DE (1993) Host-pathogen population cycles in forest insects? Lessons from simple models reconsidered. Oikos 67:529–538

    Google Scholar 

  • Brownbridge M, Adamowitz A, Skinner M, Parker BL (1999) Prevalence of fungal entomopathogens in the life cycle of pear thrips, Taeniothrips inconsequens (Thysanoptera: Thripidae), in Vermont sugar maple forests. Biol Control 16:54–59

    Google Scholar 

  • Bruck D (2004) Natural occurrence of entomopathogens in Pacific Northwest nursery soils and their virulence to the black vine weevil, Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae). Environ Entomol 33:1335–1343

    Google Scholar 

  • Buntgen U, Frank D, Liebold A, Johson D, Carrer M, Urbinati C, Grabner M, Nicolussi K, Levanic T, Esper J (2009) Three centuries of insect outbreaks across the European Alps. New Phytol 182:929–941

    Google Scholar 

  • Burden JP, Nixon CP, Hodgkinson AE, Possee RD, Sait SM, King LA, Hails RS (2003) Covert infections as a mechanism for long-term persistence of baculoviruses. Ecol Lett 6:524–531

    Google Scholar 

  • Burges HD, Hussey NW (eds) (1971) Microbial control of insects. Academic Press Inc., London

  • Burns CW (1979) Fungal parasitism in a copepod population: the effects of Aphanomyces on the population dynamics of Boeckella dilatata Sars. J Plankton Res 7:201–205

    Google Scholar 

  • Chee-Sanford (2008) Weed seeds as nutritional resources for soil Ascomycota and characterization of specific associations between plant and fungal species. Biol Fert Soils 44:763–771

    Google Scholar 

  • Cooper VS, Reiskind MH, Miller JA, Shelton KA, Walther BA, Elkinton JS, Ewald PW (2002) Timing of transmission and the evolution of virulence of an insect virus. Proc R Soc Lond B Biol 269:1161–1165

    Google Scholar 

  • Cory JS, Ericsson JD (2009) Fungal entomopathogens in a tritrophic context. BioControl. doi:10.1007/s10526-009-9247-4 (this SI)

  • Cory J, Myers JH (2009) Within and between population variation in disease resistance in cyclic populations of western tent caterpillars: a test of the disease defence hypothesis. J Anim Ecol 78:646–655

    PubMed  Google Scholar 

  • Dean GJW, Wilding N (1971) Entomophthora infecting cereal aphids Metopolophium dirhodum and Sitobion avenae. J Invertebr Pathol 18:169–176

    CAS  PubMed  Google Scholar 

  • Dean GJW, Wilding N (1973) Infection of cereal aphids by fungus Entomophthora. Ann Appl Biol 74:133–138

    Google Scholar 

  • Dromph KM, Pell JK, Eilenberg J (2002) Influence of flight and colour morph on susceptibility of Sitobion avenae to infection by Erynia neoaphidis. Biocontrol Sci Technol 12:753–756

    Google Scholar 

  • Dwyer G (1994) Density-dependence and spatial structure in the dynamics of insect pathogens. Am Nat 143:533–562

    Google Scholar 

  • Dwyer G, Elkinton JS, Hajek AE (1998) Spatial scale and the spread of a fungal pathogen of Gypsy moth. Am Nat 152:485–494

    CAS  PubMed  Google Scholar 

  • Dwyer G, Dushoff J, Elkinton JS, Levin SA (2000) Pathogen-driven outbreaks in forest defoliators revisited: building models from experimental data. Am Nat 156:105–120

    PubMed  Google Scholar 

  • Dwyer G, Dushoff J, Yee SH (2004) The combined effects of pathogens and predators on insect outbreaks. Nature 430:341–345

    CAS  PubMed  Google Scholar 

  • Eilenberg J (1987) The culture of Entomophthora muscae (C.) Fres. (Zygomycetes: Entomophthorales) in carrot flies (Psila rosae F.) (Diptera: Psilidae) and the effect of temperature on the pathology of the fungus. Entomophaga 32:425–435

    Google Scholar 

  • Eilenberg J, Michelsen V (1999) Natural host range and prevalence of the genus Strongwellsea (Zygomycota: Entomophthorales) in Denmark. J Invertebr Pathol 73:189–198

    PubMed  Google Scholar 

  • Eilenberg J, Pell JK (2007) Ecology. In: Keller S (ed) Arthropod pathogenic Entomophthorales: biology, ecology, identification. Office des Publications Officielles des Communautés Européennes pp 7–26

  • Eilenberg J, Philipsen H (1988) The occurrence of Entomophthorales on the carrot fly (Psila rosae F.) in the field during two successive seasons. Entomophaga 33:135–144

    Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400

    Google Scholar 

  • Ekbom BS, Pickering J (1990) Pathogenic fungal dynamics in fall populations of the blackmargined aphid (Monella caryella). Ent Exp et Appl 57:29–37

    Google Scholar 

  • Ekesi S, Maniania NK, Ampong-Nyarko K (1999) Effect of temperature on germination, radial growth and virulence of Metarhizium anisopliae and Beauveria bassiana on Megalurothrips sjostedti. Biocontrol Sci Technol 9:177–185

    Google Scholar 

  • Ekesi S, Shah PA, Clark SJ, Pell JK (2005) Conservation biological control with the fungal pathogen Pandora neoaphidis: implications of aphid species, host plant and predator foraging. Agric For Entomol 7:21–30

    Google Scholar 

  • Elderd BD, Dushoff J, Dwyer G (2008) Host-pathogen interactions, insect outbreaks, and natural selection for disease resistance. Am Nat 172:829–842

    PubMed  Google Scholar 

  • Elkinton JS, Healy WM, Buonaccorsi JP, Boettner GH, Hazzard AM, Smith HR, Liebhold AM (1996) Interactions among gypsy moths, white-footed mice, and acorns. Ecology 77:2332–2342

    Google Scholar 

  • Evans HC (1981) Entomogenous fungi in tropical forest ecosystems: an appraisal. Ecol Entomol 7:47–60

    Google Scholar 

  • Fargues J, Goettel MS, Smits N, Ouedraogo A, Vidal C, Lacey LA, Lomer CJ, Rougier M (1996) Variability in susceptibility to simulated sunlight of conidia among isolates of entomopathogenic Hyphomycetes. Mycolpathol 135:171–181

    Google Scholar 

  • Feng MG, Chen C (2002) Incidences of infected Myzus persicae alatae in flight imply place-to-place dissemination of entomophthoralean fungi in aphid populations through migration. J Invertebr Pathol 81:53–56

    PubMed  Google Scholar 

  • Feng MG, Chen C, Chen B (2004) Wide dispersal of aphid-pathogenic Entomophthorales among aphids relies upon migratory alates. Enviro Microbiol 6:510–516

    Google Scholar 

  • Ferrari J, Müller CB, Kraaijeveld AR, Godfray HC (2001) Clonal variation and covariation in aphid resistance to parasitoids and a pathogen. Evolution 55:1805–1814

    CAS  PubMed  Google Scholar 

  • Filotas MJ, Hajek AE (2004) Influence of temperature and moisture on infection of forest tent caterpillars (Lepidoptera: Lasiocampidae) exposed to resting spores of the entomopathogenic fungus Furia gastropachae (Zygomycetes: Entomophthorales). Environ Entomol 33:1127–1136

    Google Scholar 

  • Fournier A, Enkerli J, Keller S, Widmer F (2008) A PCR-based tool for the cultivation-independent monitoring of Pandora neoaphidis. J Invertebr Pathol 99:49–56

    CAS  PubMed  Google Scholar 

  • Furlong MJ, Pell JK (1997) The influence of environmental factors on the persistence of Zoophthora radicans conidia. J Invertebr Pathol 69:223–233

    Google Scholar 

  • Furlong MJ, Pell JK, Reddy GVP (1997) Premortality effects of Zoophthora radicans (Zygomycetes: Entomophthorales) infection on larval feeding rate and adult fecundity in Plutella xylostella (Lepidoptera: Yponomeutidae). J Invertebr Pathol 70:214–220

    PubMed  Google Scholar 

  • Fuxa JR, Tanada Y (eds) (1987) Epizootiology of insect diseases. Wiley, New York

    Google Scholar 

  • Gaston KJ (2009) Geographic range limits of species. Proc R Soc Lond B Biol 276:1391–1393

    CAS  Google Scholar 

  • Goettel MS, Eilenberg J, Glare TR (2005) Entomopathogenic fungi and their role in regulation of insect populations. In: Gilbert LI, Latrou K, Gill S (eds) Comprehensive molecular insect science, vol 6. Elsevier, Oxford, pp 361–406

    Google Scholar 

  • Goettel MS, Koike M, Kim JJ, Aiuchi D, Shinya R, Brodeur J (2008) Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J Invertebr Pathol 98:256–261

    CAS  PubMed  Google Scholar 

  • Greif MD, Currah RS (2007) Patterns in the occurrence of saprophytic fungi carried by arthropods caught in traps baited with rotted wood and dung. Mycologia 99:7–19

    CAS  PubMed  Google Scholar 

  • Grenfell BT, Dobson AP (eds) (1995) Ecology of infectious diseases in natural populations. Cambridge University Press, UK

    Google Scholar 

  • Hajek AE (1997) Fungal and viral epizootics in gypsy moth (Lepidoptera: Lymantriidae) populations in central New York. Biol Control 10:58–68

    Google Scholar 

  • Hajek AE (1999) Pathology and epizootiology of Entomophaga maimaiga infections in forest Lepidoptera. Microbiol Mol Biol R 63:814–835

    CAS  Google Scholar 

  • Hajek AE (2001) Larval behaviour in Lymantria dispar increases risk of fungal infection. Oecologia 126:285–291

    Google Scholar 

  • Hajek AE, Delalibera I (2009) Fungal pathogens as classical biological control agents against arthropods. BioControl. doi:10.1007/s10526-009-9253-6 (this SI)

  • Hajek AE, Butt TM, Strelow LI, Gray SM (1991) Detection of Entomophaga maimaiga (Zygomycetes, Entomophthorales) using enzyme-linked-immunosorbent-assay. J Invertebr Pathol 58:1–9

    Google Scholar 

  • Hajek AE, Butler L, Walsh SRA, Silver JC, Hain FP, Hastings FL, Odell TM, Smitley DR (1996) Host range of the gypsy moth (Lepidoptera: Lymantriidae) pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) in the field versus the laboratory. Environ Entomol 25:709–721

    Google Scholar 

  • Hajek AE, Olsen CH, Elkinton JS (1999) Dynamics of airborne conidia of the gypsy moth (Lepidoptera: Lymantriidae) fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales). Biol Control 16:111–117

    Google Scholar 

  • Hajek AE, Strazanac JS, Wheeler MM, Vermeylen FM, Butler L (2004) Persistence of the fungal pathogen Entomophaga maimaiga and its impact on native Lymantriidae. Biol Control 30:466–473

    Google Scholar 

  • Hall RA, Papierok B (1982) Fungi as biological control agents of arthropods of agricultural and medical importance. Parasitol 84:205–240

    Google Scholar 

  • Hassell MP, May RM (1988) Spatial heterogeneity and the dynamics of parasitoid-host systems. Ann Zoo Fenn 25:55–61

    Google Scholar 

  • Hassell MP, Comins HN, May RM (1991) Spatial structure and chaos in insect population dynamics. Nature 353:255–258

    Google Scholar 

  • Hatting JL, Humber RA, Poprawski TJ, Miller RM (1999) A survey of fungal pathogens of aphids from South Africa, with special reference to cereal aphids. Biol Control 16:1–12

    Google Scholar 

  • Hawkins BA, Cornell HV, Hochberg ME (1997) Predators, parasitoids and pathogens as mortality agents in phytophagous insect populations. Ecology 78:2145–2152

    Google Scholar 

  • Hemmati F, Pell JK, McCartney HA, Deadman ML (2001) Airborne concentrations of conidia of Erynia neoaphidis above cereal fields. Mycol Res 105:485–489

    Google Scholar 

  • Henson KSE, Craze PG, Memmott J (2009) The restoration of parasites, parasitoids and pathogens to heathland communities. Ecology 90:1840–1851

    PubMed  Google Scholar 

  • Hesketh H, Alderson PG, Pye BJ, Pell JK (2008) The development and multiple uses of a standardised bioassay method to select hypocrealean fungi for biological control of aphids. Biol Control 46:242–255

    CAS  Google Scholar 

  • Hess G (1996) Disease in metapopulation models: implications for conservation. Ecology 77:1617–1632

    Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Brandon Matheny P, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson K-H, Lichtwardt R, Longcore J, Miądlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    PubMed  Google Scholar 

  • Hoch G, Schopf A, Maddox JV (2000) Interactions between an entomopathogenic microsporidium and the endoparasitoid Glyptapanteles liparidis within their host, the gypsy moth larva. J Invertebr Pathol 75:59–68

    CAS  PubMed  Google Scholar 

  • Hoch G, D’Amico V, Solter LF, Zubrik M, McManus ML (2008) Quantifying horizontal transmission of Nosema lymantriae, a microsporidian pathogen of the gypsy moth, Lymantria dispar (Lep., Lymantriidae) in field cage studies. J Invertebr Pathol 99:146–150

    PubMed  Google Scholar 

  • Hochberg ME (1989) The potential role of pathogens in biological control. Nature 337:262–265

    CAS  PubMed  Google Scholar 

  • Holt RD (1984) Spatial heterogeneity, indirect interactions, and the coexistence of prey species. Am Nat 124:377–406

    Google Scholar 

  • Hua L, Feng M-G (2003) New use of broomcorn millets for production of granular cultures of aphid-pathogenic fungus Pandora neoaphidis for high sporulation potential and infectivity to Myzus persicae. FEMS Microbiol Lett 227:311–317

    CAS  PubMed  Google Scholar 

  • Humber RA (1976) Systematics of the genus Strongwellsea (Zygomycetes: Entomophthorales). Mycologia 68:1042–1060

    CAS  PubMed  Google Scholar 

  • Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invertebr Pathol 98:262–266

    PubMed  Google Scholar 

  • Inglis GD, Goettel MS, Butt TM, Strasser H (2001) Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents; progress, problems and potential. CABI Publishing, Wallingford, UK. pp 23–69

  • Jaronski S (2009) Ecological factors in the inundative use of fungal entomopathogens. doi:10.1007/s10526-009-9248-3 (this SI)

  • Johnson PTJ, Longcore JE, Stanton DE, Carnegie RB (2006) Chytrid infections of Daphnia pulicaria: development, ecology, pathology and phylogeny of Polycaryum leave. Freshwater Biol 51:634–648

    Google Scholar 

  • Kamata N (2000) Population dynamics of the beech caterpillar, Syntypistis punctatella, and biotic and abiotic factors. Pop Ecol 42:267–278

    Google Scholar 

  • Keeling PJ, Fast NM (2002) Microsporidia: biology and evolution of highly reduced intracellular parasites. Ann Rev Microbiol 56:93–116

    CAS  Google Scholar 

  • Keller S (1987a) Observation on the overwintering of Entomophthora planchoniana. J Invertebr Pathol 50:333–335

    Google Scholar 

  • Keller S (1987b) Arthropod-pathogenic Entomophthorales of Switzerland. I. Conidiobolus, Entomophaga and Entomophthora. Sydowia 40:122–167

    Google Scholar 

  • Keller S, Schweizer C, Shah P (1999) Differential susceptibility of two Melolontha populations to infections by the fungus Beauveria brongniartii. Biocontrol Sci Technol 9:441–446

    Google Scholar 

  • Klemola T, Tanhuanpää M, Korpimäki E, Ruohomäki K (2002) Specialist and generalist natural enemies as an explanation for geographical gradients in population cycles of northern herbivores. Oikos 99:83–94

    Google Scholar 

  • Klingen I, Eilenberg J, Meadow R (2002) Effects of farming system, field margins and bait insect on the occurrence of insect pathogenic fungi in soils. Agric Ecosyst Environ 91:191–198

    Google Scholar 

  • Klingen I, Wærsted G, Westrum K (2008) Overwintering and prevalence of Neozygites floridana (Zygomycetes: Neozygitaceae) in hibernating females of Tetranychus urticae (Acari: Tetranychidae) under cold climatic conditions in strawberries. Exp Appl Acarol 46:231–245

    PubMed  Google Scholar 

  • Klubertanz TH, Pedigo LP, Carlson RE (1991) Impact of fungal epizootics on the biology and management of the 2-spotted spider mite (Acari, Tetranychidae) in soybean. Environ Entomol 20:731–735

    Google Scholar 

  • Krassilstchik J (1888) La production industrielle des parasites végétaux pour la destruction des insects nuisibles. Bulletin Biologique de la France et de la Belgique 19:461–472

    Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Liu WC, Bonsall MB, Godfray HCJ (2007) The form of host density-dependence and the likelihood of host-pathogen cycles in forest-insect systems. Theor Popul Biol 72:86–95

    PubMed  Google Scholar 

  • McCallum H, Dobson A (2002) Disease, habitat fragmentation and conservation. Proc R Soc Lond B Biol 269:2041–2049

    Google Scholar 

  • Menendez R, Gonzalez-Megias A, Lewis OT, Shaw MR, Thomas CD (2008) Escape from natural enemies during climate-driven range expansion: a case study. Ecol Entomol 33:413–421

    Google Scholar 

  • Meyling NV, Eilenberg J (2006a) Isolation and characterisation of Beauveria bassiana isolates from phylloplanes of hedgerow vegetation. Mycol Res 110:188–195

    CAS  PubMed  Google Scholar 

  • Meyling NV, Eilenberg J (2006b) Occurrence and distribution of soil borne entomopathogenic fungi within a single organic agroecosystem. Agric Ecosyst Environ 113:336–341

    Google Scholar 

  • Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institutes, Washington DC

    Google Scholar 

  • Miller GA, Pell JK, Simpson SJ (2009) Crowded locusts produce hatchlings vulnerable to fungal attack. Biol Lett (in press)

  • Milner RJ (1982) On the occurrence of pea aphids, Acyrthosiphon pisum, resistant to isolates of the fungal pathogen Erynia neoaphidis. Entomol Exp Appl 32:23–27

    Google Scholar 

  • Milner RJ (1985) Distribution in time and space of resistance to the pathogenic fungus Erynia neoaphidis in the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 37:235–240

    Google Scholar 

  • Monzon AJ, Guharay F, Klingen I (2008) Natural occurrence of Beauveria bassiana in Hypothenemus hampei (Coleoptera: Curculionidae) populations in unsprayed coffee fields. J Invertebr Pathol 97:134–141

    PubMed  Google Scholar 

  • Myers JH (1988) Can a general hypothesis explain population cycles of forest Lepidoptera. Adv Ecol Res 18:179–242

    Google Scholar 

  • Namba T, Umemoto A, Minami E (1999) The effects of habitat fragmentation on persistence of source-sink metapopulations in systems with predators and prey or apparent competitors. Theor Popul Biol 56:123–137

    CAS  PubMed  Google Scholar 

  • Navon A, Ascher KRS (eds) (2000) Bioassays of entomopathogenic microbes and nematodes. CABI Publishing, Wallingford, UK

  • Nielsen C, Hajek AE (2005) Control of invasive soybean aphid, Aphis glycines (Hemiptera: Aphididae), populations by existing natural enemies in New York State, with emphasis on entomopathogenic fungi. Environ Entomol 34:1036–1047

    Google Scholar 

  • Nielsen C, Eilenberg J, Harding S, Oddsdottir E, Haldorsson G (2001) Geographical distribution and host range of Entomophthorales infecting the green spruce aphid Elatobium abietinum Walker in Iceland. J Invertebr Pathol 78:72–80

    CAS  PubMed  Google Scholar 

  • Nielsen C, Hajek AE, Humber RA, Bresciani J, Eilenberg J (2003) Soil as an environment for winter survival of aphid-pathogenic Entomophthorales. Biol Control 28:92–100

    Google Scholar 

  • Oduor GI, Yaninek JS, van der Geest LPS, Moraes GJ (1996) Germination and viability of capilliconidia of Neozygites floridana (Zygomycetes: Entomophthorales) under constant temperature, humidity, and light conditions. J Invertebr Pathol 67:267–278

    PubMed  Google Scholar 

  • Paniaqua MR, Medianero E, Lewis OT (2009) Structure and vertical stratification of plant galler-parasitoid food webs in two tropical forests. Ecol Entomol 34:310–320

    Google Scholar 

  • Parry D, Spence JR, Volney WJA (1997) Responses of natural enemies to experimentally increased populations of the forest tent caterpillar, Malacosoma disstria. Ecol Entomol 22:97–108

    Google Scholar 

  • Pell JK (2007) Ecological approaches to pest management using entomopathogenic fungi; concepts, theory, practice and opportunities. In: Ekesi S, Manianai N (eds) Use of entomopathogenic fungi in pest management. Research Signpost, pp 145–177

  • Pell JK, Eilenberg J, Hajek AE, Steinkraus D (2001) Biology, ecology and pest management potential of Entomophthorales. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CABI Publishing, pp 71–153, Wallingford, UK

  • Pell JK, Hannam J, Steinkraus D (2009) Conservation biological control using fungal entomopathogens. BioControl. doi:10.1007/s10526-009-9245-6 (this SI)

  • Pilarska DK, Solter LF, Kereselidze M, Linde A, Hoch G (2006) Microsporidian infections in Lymantria dispar larvae: interactions and effects of multiple species infections on pathogen horizontal transmission. J Invertebr Pathol 93:105–113

    PubMed  Google Scholar 

  • Pontoppidan MB, Himanan W, Hywell-Jones NL, Boomsma JJ, Hughes DP (2009) Graveyyards on the move: the spatio-temporal distribution of Ophiocordyceps-infected ants. PlosOne 4(e4835):1–10

    Google Scholar 

  • Posada F, Vega F (2005) A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens. 10 pp. J Insect Sci 5:37 available online: http://insectscience.org/5.37/

  • Reay SD, Hachet C, Nelson TL, Brownbridge M, Glare TR (2007) Persistence of conidia and potential efficacy of Beauveria bassiana against pinhole borers in New Zealand southern beech forests. Forest Ecol Manag 246:232–239

    Google Scholar 

  • Reeson AF, Wilson K, Gunn A, Hails RS, Goulson D (1998) Baculovirus resistance in the noctuid Spodoptera exempta is phenotypically plastic and responds to population density. Proc R Soc Lond B Biol 265:1787–1791

    Google Scholar 

  • Reeson AF, Wilson K, Cory JS, Hankard P, Weeks JM, Goulson D, Hails RS (2000) Effects of phenotypic plasticity on pathogen transmission in the field in a Lepidoptera-NPV system. Oecologia 124:373–380

    Google Scholar 

  • Reilly JR, Hajek AE (2008) Density-dependent resistance of the gypsy moth Lymantria dispar to its nucleopolyhedrovirus, and the consequences for population dynamics. Oecologia 154:691–701

    PubMed  Google Scholar 

  • Roditakis E, Couzin ID, Franks NR, Charnley AK (2008) Effects of Lecanicillium longisporum infection on the behaviour of the green peach aphid Myzus persicae. J Insect Physiol 54:128–136

    CAS  PubMed  Google Scholar 

  • Rodriguez DJ, Torres-Sorando L (2001) Models of infectious diseases in spatially heterogeneous environments. B Math Biol 63:547–571

    CAS  Google Scholar 

  • Roy HE, Cottrell T (2008) Forgotten natural enemies: interactions between coccinellids and insect-parasitic fungi. Eur J Entomol 105:391–398

    Google Scholar 

  • Roy HE, Pell JK (2000) Interactions between entomopathogenic fungi and other natural enemies: implications for biological control. Biocontrol Sci Technol 10:737–752

    Google Scholar 

  • Roy HE, Steinkraus D, Eilenberg E, Pell JK, Hajek A (2006) Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts. Ann Rev Entomol 51:331–357

    CAS  Google Scholar 

  • Roy HE, Brown PMJ, Rothery P, Ware RL, Majerus MEN (2008) Interactions between the fungal pathogen Beauveria bassiana and three species of ladybird: Harmonia axyridis, Coccinella septempunctata and Adalia bipunctata. BioControl 53:265–276

    Google Scholar 

  • Roy HE, Hails RS, Hesketh H, Roy DB, Pell JK (2009) Beyond biological control: non-pest insects and their pathogens in a changing world. Insect Conserv Diver 2:65–72

    Google Scholar 

  • Samson RA, Evans HC, Latge JP (1988) Atlas of entomopathogenic fungi. Springer, Berlin

    Google Scholar 

  • Sanjuan T, Henao LG, Amat G (2001) Spatial distribution of Cordyceps spp. (Ascomycotina: Clavicipitaceae) and its impacts on the ants in forests of the Amazonia Colombian foothill. Rev Biol Trop 49:945–955

    CAS  PubMed  Google Scholar 

  • Scholte E-J, Knols BGJ, Samson RA, Takken W (2004) Entomopathogenic fungi for mosquito control: a review. 24 pp. J Insect Sci 4:19, Available online: http://www.insectscience.org/4.19/

  • Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423

    CAS  PubMed  Google Scholar 

  • Shah PA, Clark SJ, Pell JK (2004) Assessment of aphid host range of Pandora neoaphidis (Zygomycetes, Entomophthorales). Biol Control 29:90–99

    Google Scholar 

  • Shapiro-Ilan DI, Fuxa JR, Lacey LA, Onstad DW, Kaya HK (2005) Definitions of pathogenicity and virulence in invertebrate pathology. J Invertebr Pathol 88:1–7

    PubMed  Google Scholar 

  • Shimazu M, Sato H, Maehara N (2002) Density of the entomopathogenic fungus, Beauveria bassiana Vuillemin (Deuteromycotina: Hyphomycetes) in forest air and soil. Appl Entomol Zool 37:19–26

    Google Scholar 

  • Sierotzki H, Camastral F, Shah PA, Aebi M, Tuor U (2000) Biological characteristics of selected Erynia neoaphidis isolates. Mycol Res 104:213–219

    Google Scholar 

  • Siri A, Scorsetti AC, Dikgolz VE, Lopez CC (2005) Natural infections caused by the fungus Beauveria bassiana as a pathogen of Musca domestica in the neotropic. BioControl 50:937–940

    Google Scholar 

  • Smitley DR, Kennedy GG, Brooks WM (1986) Role of the entomogenous fungus, Neozygites floridana, in population declines of the two spotted spider mite, Tetranychus urticae, on field corn. Entomol Exp Appl 41:255–264

    Google Scholar 

  • Solter LF (2006) Transmission as a predictor of ecological host specificity with a focus on vertical transmission of microsporidia. J Invertebr Pathol 92:132–140

    PubMed  Google Scholar 

  • Solter LF, Becnel JJ (2007) Entomopathogenic microsporidia. In: Lacey LA, Kaya K (eds) Field manual of techniques in invertebrate pathology. Application and evaluation of pathogens for control of insects and other invertebrate pests. 2nd edn, Springer, pp 199–221

  • Sookar P, Bhagwant S, Ouna EA (2008) Isolation of entomopathogenic fungi from the soil and their pathogenicity to two fruit fly species (Diptera: Tephritidae). J Appl Entomol 132:778–788

    Google Scholar 

  • Stacey DA, Thomas MB, Blanford S, Pell JK, Pugh C, Fellowes MDE (2003) Genotype and temperature influence pea aphid resistance to a fungal entomopathogen. Physiol Entomol 28:75–81

    Google Scholar 

  • Steinhaus E (1949) Principles of insect pathology. McGraw-Hill, NY, p 757

    Google Scholar 

  • Steinkraus DC, Hollingsworth RG, Slaymaker PH (1995) Prevalence of Neozygites fresenii (Entomophtholales: Neozygitaceae) on cotton aphids (Homoptera: Aphididae) in Arkansas cotton. Environ Entomol 24:465–474

    Google Scholar 

  • Steinkraus DC, Hollingsworth RG, Boys GO (1996) Aerial spores of Neozygites fresenii (Entomophthorales: Neozygitaceae): Density, periodicity, and potential role in cotton aphid (Homoptera: Aphididae) epizootics. Environ Entomol 25:48–57

    Google Scholar 

  • Stentiford GD, Neil DM, Atkinson RJA (2001) The relationship of Hematodinium infection prevalence in a Scottish Nephrops norvegicus population to season, moulting and sex. ICES J Mar Sci 59:814–823

    Google Scholar 

  • Stow A, Briscoe D, Gillings M, Holley M, Smith S, Leys R, Silberbauer T, Turnbull C, Beattie A (2007) Antimicrobial defences increase with sociality in bees. Biol Lett 3:422–424

    PubMed  Google Scholar 

  • Strasser H, Vey A, Butt TM (2000) Are there any risks in using entomopathogenic fungi for pest control with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Technol 10:717–735

    Google Scholar 

  • Sung GH, Hywel-Jones NL, Sng JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW (2007) Phylogentic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59

    Article  PubMed  Google Scholar 

  • Tarrant CA, Soper R (1986) Evidence for the vertical transmission of Coelomycidium simulii (Myceteae (Fungi): Chytridiomycetes). In: Samson RA, Vlak JM, Peters D (eds) Fundamental and applied aspects of invertebrate pathology. Fourth Int. Colloq. Invertebr. Pathol., Wageningen, Netherlands, p 212

  • Thomas MB, Blanford S (2003) Thermal biology in insect-parasite interactions. Trends Ecol Evol 18:344–350

    Google Scholar 

  • Thomas MB, Wood SN, Lomer CJ (1995) Biological control of locusts and grasshoppers using a fungal pathogen—the importance of secondary cycling. Proc R Soc Lond B Biol 259:265–270

    Google Scholar 

  • Torchin ME, Lafferty KE, Dobdon AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630

    CAS  PubMed  Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2008) Conservation biological control and enemy diversity on a landscape scale (Reprinted from Biol. Control, vol 43, pg 294–309, 2007). Biol Control 45:238–253

  • Tymon AM, Shah PA, Pell JK (2004) PCR-based molecular discrimination of Pandora neoaphidis isolates from related entomopathogenic fungi and development of species-specific diagnostic primers. Mycol Res 108:1–15

    Google Scholar 

  • Ugine TA, Wraight SP, Brownbridge M, Sanderson JP (2005) Development of a novel bioassay for estimation of median lethal concentrations (LC50) and doses (LD50) of the entomopathogenic fungus Beauveria bassiana, against western flower thrips, Frankliniella occidentalis. J Invertebr Pathol 89:210–218

    PubMed  Google Scholar 

  • van Veen FJF, Muller CB, Pell JK, Godfray HCJ (2008) Food web structure of three guilds of natural enemies: predators, parasitoids and pathogens of aphids. J Anim Ecol 77:191–200

    PubMed  Google Scholar 

  • Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279

    PubMed  Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Jackson MA, Keller S, Koike M, Maniania NK, Monzón A, Ownley B, Pell JK, Rangel D, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Google Scholar 

  • Weir A, Hammond PM (1997) Laboulbeniales on beetles: host utilization patterns and species richness of the parasites. Biodivers Conserv 6:701–719

    Google Scholar 

  • Weseloh RM (2003) Short and long range dispersal in the Gypsy moth (Lepidoptera: Lymantriidae) fungal pathogen, Entomophaga maimaiga (Zygomycetes: Entomophthorales). Environ Entomol 32:111–122

    Google Scholar 

  • Weseloh RM (2004) Effect of conidial dispersal of the fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) on survival of its gypsy moth (Lepidoptera: Lymantriidae) host. Biol Control 29:138–144

    Google Scholar 

  • Weseloh RM, Andreadis TG (1997) Persistence of resting spores of Entomophaga maimaiga, a fungal pathogen of the gypsy moth, Lymantria dispar. J Invertebr Pathol 69:195–196

    PubMed  Google Scholar 

  • Wichmann MC, Alexander MJ, Soons MB, Galsworthy S, Dunne L, Gould R, Fairfax C, Niggemann M, Hails RS, Bullock JM (2009) Human-mediated dispersal of seeds over long distances. Proc R Soc B Biol 276:523–532

    Google Scholar 

  • Wilding N (1969) Effect of humidity on the sporulation of Entomophthora aphidis and E. thaxteriana. Trans Brit Mycol Soc 53:126–130

    Google Scholar 

  • Wilding N, Perry JN (1980) Studies on Entomophthora in populations of Aphis fabae on field beans. Ann Appl Biol 94:367–378

    Google Scholar 

  • Wilson K, Cotter SC, Reeson AF, Pell JK (2001) Melanism and disease resistance in insects. Ecol Lett 4:637–649

    Google Scholar 

  • Wilson K, Thomas MB, Blanford S, Doggett M, Simpson SJ, Moore SL (2002) Coping with crowds: density-dependent disease resistance in desert locusts. Proc Natl Acad Sci USA 8:5471–5475

    Google Scholar 

  • Wongsa P, Tasanatai K, Watts P, Hywel-Jones N (2005) Isolation and in vitro cultivation of the insect pathogenic fungus Cordyceps unilateralis. Mycol Res 109:936–940

    CAS  PubMed  Google Scholar 

  • Xu J-H, Feng M-G (2000) The time–dose–mortality modeling and virulence indices for two Entomophthoralean species, Pandora delphacis and P. neoaphidis, against the green peach aphid, Myzus persicae. BiolControl 17:29–34

    Google Scholar 

  • Xu J-H, Feng M-G (2002) Pandora delphacis (Entomophthorales: Entomophthoraceae) infection affects the fecundity and population dynamics of Myzus persicae (Homoptera: Aphididae) at varying regimes of temperature and relative humidity in the laboratory. Biol Control 25:85–91

    Google Scholar 

Download references

Acknowledgments

HH, HER and RSH were funded by the Environmental Change Integrating Fund through the NERC Centre for Ecology & Hydrology. JKP was funded by Department for Environment, Food and Rural Affairs of the United Kingdom (Defra) and the Biotechnology and Biological Sciences Research Council (BBSRC) of the United Kingdom. Rothamsted Research is an Institute of the BBSRC. JE was funded by the University of Copenhagen, Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hesketh.

Additional information

Handling Editor: Eric Wajnberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesketh, H., Roy, H.E., Eilenberg, J. et al. Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. BioControl 55, 55–73 (2010). https://doi.org/10.1007/s10526-009-9249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-009-9249-2

Keywords

Navigation