Skip to main content
Log in

Activity of quinolizidine alkaloids from three Mexican Lupinus against the lepidopteran crop pest Spodoptera frugiperda

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Bitter lupins (Lupinus spp.) are not used as a protein source because of their toxicity. However, they may have alternative uses as potential sources of natural insecticides. Quinolizidine alkaloids (QA) of three Mexican Lupinus species (Fabaceae): L. montanus (HBK), L. stipulatus (Agardh) and L. aschenbornii (Schauer), were analyzed by capillary Gas Chromatography-Mass Spectrometry. Sparteine was found in high amounts in both L. montanus and L. aschenbornii while the major alkaloids in L. stipulatus extract were aphylline and an epiaphylline-like compound. Alkaloid extracts were tested for their insecticidal activity using larvae of the Fall Armyworm, Spodoptera frugiperda (Smith); (Lepidoptera, Noctuidae) as a model pest. We compared LD50 values and mean weight of caterpillars fed with alkaloid extracts of the three species studied with those of sparteine, a widespread QA found in various lupin species. Extracts of L. montanus and L. aschenbornii were found to be as effective as sparteine and extracts L. stipulatus were found to be the most toxic against the larvae of S. frugiperda. This suggests that the various QA act differently on caterpillars, and could be used to control Spodoptera populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

GC-MS:

Gas Chromatography coupled with Mass Spectrometry

LD50 :

Lethal Dose killing 50% of individuals

MS:

Mass Spectrometry

QA:

Quinolizidine Alkaloid

RI:

Kovats Retention Index

References

  • Avila MJA, Mendoza RJL (1981) Guía para cultivar maíz de temporal en la parte alta del estado de Morelos. Campo Agrícola Experimental de Zacatepec, SARH, INIA, CIAMEC, CAEZACA. Zacapetec, Morelos, México

  • Berkov S, Sidjimova B, Evstatieva L, Popov S (2004) Intraspecific variability in the alkaloid metabolism of Galanthus elwesii. Phytochemistry 65:579–586

    Article  PubMed  CAS  Google Scholar 

  • Berkov S, Doncheva T, Philipov S, Alexandrov K (2005) Ontogenetic variation of the tropane alkaloids in Datura stramonium. Biochem Syst Ecol 33:1017–1029

    Article  CAS  Google Scholar 

  • Bermúdez-Torres K (1998) Vorkommen und Verbreitung der Lupinen in Mexiko. In: Wink M (ed) Lupinen in Forschung und Praxis. Universität Heidelberg, Heidelberg, Germany, pp 27–40

    Google Scholar 

  • Bermúdez-Torres K, Robledo Quintos N, Martínez Herrera J, Tei A, Wink M (1999) Patrón de acumulación de alcaloides en hojas y semillas de L. aschenbornii crecidos en México. Revista Latinoamericana de Química 27(3):101–105

    Google Scholar 

  • Carey DB, Wink M (1994) Elevational variation of quinolizidine alkaloid contents in a in lupin (Lupinus argenteus) of the Rocky Mountains. J Chem Ecol 20:849–857

    Article  CAS  Google Scholar 

  • Coldham I, Dufour S, Haxell TF, Venall G (2005) Dynamic resolution of N-alkyl-2-lithiopyrrolidines with the chiral ligand (−)-sparteine. Tetrahedron 61:3205–3220

    Article  CAS  Google Scholar 

  • De la Vega R, Gutiérrez MP, Sanz C, Calvo R, Robredo LM, de la Cuadra C, Múzquiz M (1996) Bactericide-like effect of Lupinus alkaloids. Ind Crop Prod 5:141–148

    Article  Google Scholar 

  • De Schamphelaere KAC, Vasconcelos FM, Allen HE, Janssen CR (2004) The effect of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environ Toxicol Chem 23:1248–1255

    Article  PubMed  Google Scholar 

  • Franco-Archundia S, Jiménez-Pérez A, Luna-Leon C, Figueroa-Brito R (2006) Efecto tóxico de semillas de cuatro variedades de Carica papaya (Caricaceae) en Spodoptera frugiperda (Lepidoptera: Noctuidae). Folia Entomologica Mexicana 45:171–177

    Google Scholar 

  • Garcia Lopez PM, Muzquiz M, Zamora Natera NJF, Burbano C, Pedrosa MM, Cuadrado C (1999) Lupanine and sparteine content in three Mexican wild lupin species. In: Van Santen E, Wink M, Weissmann S and Roemer P (eds) Lupin, an ancient crop for the new millenium. Proceedings of the 9th International lupin conference. Klink/Müritz, Germany. International Lupin Association, Canterbury, New Zealand

  • Gegear RJ, Manson JS, Thomson JD (2007) Ecological context influences pollinator deterrence by alkaloids in floral nectar. Ecol Lett 10:375–382

    Article  PubMed  Google Scholar 

  • Gross R (1982) El cultivo y la utilización del tarwi (Lupinus mutabilis Sweet). Estudio FAO No. 36. Producción y protección vegetal, Roma

    Google Scholar 

  • IENICA (Interactive European Network for Industrial Crops and their Applications) (2002) Lupinus. www.ienica.net/crops/lupins.pdf

  • Kinghorn AD, Balandrin MF (1984) In: Pelletier WS (ed) Alkaloids: chemical and biological perspectives, vol 2. Wiley Chichester, pp 105–148

  • Korcz A, Markiewicz M, Pulikowska J, Twardowski T (1987) Species-specific inhibitory effects of lupine alkaloids on translation in plants. J Plant Physiol 128:433–438

    CAS  Google Scholar 

  • Legal L, Moulin B, Jallon JM (1999) The relation between structures and toxicity of chemotaxis of oxygenated aliphatic compounds homologous to the insecticide octanoic acid for two species of Drosophila. Pesticide Biochem Physiol 65:90–101

    Article  CAS  Google Scholar 

  • Meißner C, Wink M (1992) GC/MS-Analyse von Alkaloiden nordamerikanischer Lupinen. In: Wink M (ed) Lupinen 1991- Forschung, Anbau und Verwertung. Universität Heidelberg, Heidelberg, Germany, pp 91–129

    Google Scholar 

  • Múzquiz M, Cuadrado C, Burbano C, Calvo R, De La Cuadra C (1994) Herbicide-like effect of Lupinus alkaloids. Ind Crop Prod 2:273–280

    Article  Google Scholar 

  • Nowacki E (1963) Inheritance and biosynthesis of alkaloids in lupin. Genetica Polonica 7(2):34–48

    Google Scholar 

  • Paolisso G, Nenquin M, Schmeer W, Mathot F, Meissner HP, Henquin JC (1985) Sparteine increases insulin release by decreasing the K+ permeability of the B-cell membrane. Biochem Pharmacol 34(13):2355–2361

    Article  PubMed  CAS  Google Scholar 

  • Pilat P, Votruba J, Dobersky P, Prokop A (1976) Application of mathematical optimization methods in microbiology. Folia Microbiol 21:391–405

    Article  CAS  Google Scholar 

  • Regnault-Roger C (1997) The potential of botanical essential oils for insect pest control. Integr Pest Manag Rev 2:25–34

    Article  Google Scholar 

  • Reyes-Chilpa R, Rivera J, Oropeza M, Mendoza P, Amekraz B, Jankowski C, Campos M (2004) Methanol extracts of Hamelia patens containing oxindole alkaloids relax KCl-induced contraction in rat myometrium. Biol Pharm Bull 27:1617–1620

    Article  PubMed  CAS  Google Scholar 

  • Singaravelan N, Nee’man G, Inbar M, Izhaki I (2005) Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. J Chem Ecol 31:2791–2804

    Article  PubMed  CAS  Google Scholar 

  • Tyski S, Markiewicz M, Gulewicz K, Twardowski T (1988) The effect of lupin alkaloids and ethanol extracts from seeds of L. angustofolius and selected bacterial strains. J Plant Physiol 133(2):240–242

    CAS  Google Scholar 

  • Usmani KA, Knowles CO (2001) Toxicity of pyrethroids and effect of synergists to larval and adult Helicoverpa zea, Spodoptera frugiperda, and Agrotis ipsilon (Lepidoptera: Noctuidae). J Econ Entomol 94(4):868–873

    Article  PubMed  CAS  Google Scholar 

  • Wink M (1983) Inhibition of seed germination by quinolizidine alkaloids. Aspects of allelopathy in Lupinus albus L. Planta 158:365–368

    Google Scholar 

  • Wink M (1984a) Chemical defense of Leguminosae. Are quinolizidine alkaloids part of the antimicrobial defense system of lupins? Z Naturforsch 39c:548–552

    CAS  Google Scholar 

  • Wink M (1984b) Biochemistry and chemical ecology of lupin alkaloids. In: Proceedings of the 3rd international lupin conference. La Rochelle, pp 326–343

  • Wink M (1987) Quinolizidine alkaloids: biochemistry, metabolism, and function in plants and cell suspension cultures. Planta Med 53:509–514

    Article  PubMed  CAS  Google Scholar 

  • Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233

    Article  CAS  Google Scholar 

  • Wink M (1992) The role of quinolizidine alkaloids in plant-insect interactions. In: Bernays EA (ed) Insect-plant interactions, vol IV. CRC-Press, Boca Ratón, pp 131–166

    Google Scholar 

  • Wink M (1993) Quinolizidine alkaloids. In: Waterman P (ed) Methods in plant biochemistry, vol 8. Academic Press, London, pp 197–239

    Google Scholar 

  • Wink M (1994) Biological activities and potential application of lupin alkaloids. In: Neves-Martins JM, Beirao da Costa ML (eds) Advances in lupin research. ISA press, Lisboa, pp 161–178

    Google Scholar 

  • Wink M, Legal L (2001) Evidence for two genetically and chemically defined host races of Tyria jacobaeae (Arctiidae, Lepidoptera). Chemoecology 11:199–207

    Article  CAS  Google Scholar 

  • Wink M, Theile V (2002) Alkaloid tolerance in Manduca sexta and phylogenetically related sphingids (Lepidoptera: Sphingidae). Chemoecology 12:29–46

    Article  CAS  Google Scholar 

  • Wink M, Twardowski T (1992) Allelochemical properties of alkaloids. Effect on plants, bacteria and protein biosynthesis. In: Rizvi SJH, Rizvi V (eds) Allelopathy: basic and applied aspects. Chapman and Hall, London, pp 129–150

    Google Scholar 

  • Wink M, Witte L, Schiebel MH, Hartmann T (1980) Alkaloid pattern of cell suspension cultures and differentiated plants of Lupinus polyphyllus. Planta Med 38:238–245

    Article  CAS  Google Scholar 

  • Wink M, Witte L, Hartmann T (1981) Quinolizidine alkaloids of cell suspension cultures and plants of Cytisus (Sarothamnus) scoparius and of its root parasite Orobacnhe rapum-genistae. Planta Med 43:342–352

    Article  PubMed  CAS  Google Scholar 

  • Wink M, Hartmann T, Witte L, Rheinheimer J (1982) Interrelationship between quinolizidine alkaloid producing legumes and infesting insects: exploitation of the alkaloid-containing phloem sap of Cytisus scoparius by the Broom aphid (Aphis cytisorum). Z Naturforsch 37c:1081–1086

    CAS  Google Scholar 

  • Wink M, Witte L, Hartmann T, Theuring C, Volz V (1983) Accumulation of quinolizidine alkaloids in plants and cell suspension cultures: genera Lupinus, Cytisus, Baptisia, Genista, Laburnum and Sophora. Planta Med 48:253–257

    Article  PubMed  CAS  Google Scholar 

  • Wink M, Meißner C, Witte L (1995) Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry 38:139–153

    Article  CAS  Google Scholar 

  • Wink M, Legal L, von Nickisch-Rosenegk E (1998) How not to use systematics to test adaptative hypothesis. J Chem Ecol 24:1285–1291

    Article  CAS  Google Scholar 

  • Wippich C, Wink M (1985) Biological properties of alkaloids. Influence of quinolizidine alkaloids and gramine on the germination and development of powdery mildew, Erysiphe graminist f.sp.hordei. Experientia 41:1477–1479

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Peter Winterton is thanked for his help in correcting English. This study was supported by CONACYT (26411-N) and CGPI (978038). Laura Lina is greatly thanked for providing Spodoptera frugiperda eggs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalina Bermúdez-Torres.

Additional information

Handling editor: Samantha Cook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermúdez-Torres, K., Martínez Herrera, J., Figueroa Brito, R. et al. Activity of quinolizidine alkaloids from three Mexican Lupinus against the lepidopteran crop pest Spodoptera frugiperda . BioControl 54, 459–466 (2009). https://doi.org/10.1007/s10526-008-9180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-008-9180-y

Keywords

Navigation