Skip to main content
Log in

Organ reserve, excess metabolic capacity, and aging

  • Opinion
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

“Organ reserve” refers to the ability of an organ to successfully return to its original physiological state following repeated episodes of stress. Clinical evidence shows that organ reserve correlates with the ability of older adults to cope with an added workload or stress, suggesting a role in the process of aging. Although organ reserve is well documented clinically, it is not clearly defined at the molecular level. Interestingly, several metabolic pathways exhibit excess metabolic capacities (e.g., bioenergetics pathway, antioxidants system, plasticity). These pathways comprise molecular components that have an excess of quantity and/or activity than that required for basic physiological demand in vivo (e.g., mitochondrial complex IV or glycolytic enzymes). We propose that the excess in mtDNA copy number and tandem DNA repeats of telomeres are additional examples of intrinsically embedded structural components that could comprise excess capacity. These excess capacities may grant intermediary metabolism the ability to instantly cope with, or manage, added workload or stress. Therefore, excess metabolic capacities could be viewed as an innate mechanism of adaptability that substantiates organ reserve and contributes to the cellular defense systems. If metabolic excess capacities or organ reserves are impaired or exhausted, the ability of the cell to cope with stress is reduced. Under these circumstances cell senescence, transformation, or death occurs. In this review, we discuss excess metabolic and structural capacities as integrated metabolic pathways in relation to organ reserve and cellular aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

Abbreviations

mtDNA:

Mitochondrial DNA

Complex IV:

Cytochrome c oxidase

HMS:

Hexose monophosphate shunt

TCA:

Tricarboxylic acids cycle

ETC`:

Electron transport chain

References

  • Ahles TA, Root JC, Ryan EL (2012) Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol 30:3675–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aiken CE, Tarry-Adkins JL, Ozanne SE (2015) Transgenerational developmental programming of ovarian reserve. Sci Rep 5:16175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atamna H, Atamna W, Al-Eyd G et al (2015) Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue. Redox Biol 6:426–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernadotte A, Mikhelson VM, Spivak IM (2016) Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY) 8:3–11

    Article  Google Scholar 

  • Bolanos JP, Almeida A, Moncada S (2010) Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci 35:145–149

    Article  CAS  PubMed  Google Scholar 

  • Bortz WMT, Bortz WM 2nd (1996) How fast do we age? Exercise performance over time as a biomarker. J Gerontol A Biol Sci Med Sci 51:M223–M225

    Article  PubMed  Google Scholar 

  • Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31

    Article  CAS  PubMed  Google Scholar 

  • Calado RT, Dumitriu B (2013) Telomere dynamics in mice and humans. Semin Hematol 50:165–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callen E, Surralles J (2004) Telomere dysfunction in genome instability syndromes. Mutat Res 567:85–104

    Article  CAS  PubMed  Google Scholar 

  • Carnes BA, Witten TM (2014) How long must humans live? J Gerontol A Biol Sci Med Sci 69:965–970

    Article  PubMed  Google Scholar 

  • Choi SW, Gerencser AA, Nicholls DG (2009) Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J Neurochem 109:1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’adda Di Fagagna F, Reaper PM, Clay-Farrace L, et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

  • Davey GP, Clark JB (1996) Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J Neurochem 66:1617–1624

    Article  CAS  PubMed  Google Scholar 

  • De Lores Arnaiz GR, Ordieres MG (2014) Brain na(+), k(+)-atpase activity in aging and disease. Int J Biomed Sci 10:85–102

    PubMed  PubMed Central  Google Scholar 

  • Demetrius L, Legendre S, Harremoes P (2009) Evolutionary entropy: a predictor of body size, metabolic rate and maximal life span. Bull Math Biol 71:800–818

    Article  PubMed  PubMed Central  Google Scholar 

  • Desler C, Hansen TL, Frederiksen JB et al (2012) Is there a link between mitochondrial reserve respiratory capacity and aging? J Aging Res 2012:192503

    Article  PubMed  PubMed Central  Google Scholar 

  • Diamond J, Hammond K (1992) The matches, achieved by natural selection, between biological capacities and their natural loads. Experientia 48:551–557

    Article  CAS  PubMed  Google Scholar 

  • Dranka BP, Hill BG, Darley-Usmar VM (2010) Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species. Free Radic Biol Med 48:905–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eanes WF, Merritt TJ, Flowers JM et al (2006) Flux control and excess capacity in the enzymes of glycolysis and their relationship to flight metabolism in drosophila melanogaster. Proc Natl Acad Sci USA 103:19413–19418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson-Miller S, Hiser C, Liu J (2012) Gating and regulation of the cytochrome c oxidase proton pump. Biochim Biophys Acta 1817:489–494

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli M, Rossiello F, Clerici M et al (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14:355–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fumagalli M, Rossiello F, Mondello C, D’adda Di Fagagna F (2014) Stable cellular senescence is associated with persistent ddr activation. PLoS ONE 9:e110969

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardner M, Bann D, Wiley L et al (2014) Gender and telomere length: systematic review and meta-analysis. Exp Gerontol 51:15–27

    Article  CAS  PubMed  Google Scholar 

  • Gladyshev VN (2016) Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell 15:594–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnaiger E, Lassnig B, Kuznetsov A et al (1998) Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J Exp Biol 201:1129–1139

    CAS  PubMed  Google Scholar 

  • Goldspink DF (2005) Ageing and activity: their effects on the functional reserve capacities of the heart and vascular smooth and skeletal muscles. Ergonomics 48:1334–1351

    Article  PubMed  Google Scholar 

  • Gong G, Liu J, Liang P et al (2003) Oxidative capacity in failing hearts. Am J Physiol Heart Circ Physiol 285:H541–H548

    Article  CAS  PubMed  Google Scholar 

  • Guidot DM, Mccord JM, Wright RM, Repine JE (1993) Absence of electron transport (rho 0 state) restores growth of a manganese-superoxide dismutase-deficient saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo. J Biol Chem 268:26699–26703

    CAS  PubMed  Google Scholar 

  • Harrison DE, Strong R, Allison DB et al (2014) Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13:273–282

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L (2007) Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both. PLoS Genet 3:e220

    Article  PubMed  PubMed Central  Google Scholar 

  • Henle ES, Han Z, Tang N et al (1999) Sequence-specific DNA cleavage by fe2+-mediated fenton reactions has possible biological implications. J Biol Chem 274:962–971

    Article  CAS  PubMed  Google Scholar 

  • Herbst A, Wanagat J, Cheema N et al (2016) Latent mitochondrial DNA deletion mutations drive muscle fiber loss at old age. Aging Cell 15(6):1132–1139

    Article  CAS  PubMed Central  Google Scholar 

  • Herrera A, Garcia I, Gaytan N et al (2015) Endangered species: mitochondrial DNA loss as a mechanism of human disease. Front Biosci (Schol Ed) 7:109–124

    Article  Google Scholar 

  • Hill BG, Dranka BP, Zou L et al (2009) Importance of the bioenergetic reserve capacity in response to cardiomyocyte stress induced by 4-hydroxynonenal. Biochem J 424:99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houtkooper RH, Argmann C, Houten SM et al (2011) The metabolic footprint of aging in mice. Sci Rep 1:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 32:1222–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliodromiti S, Iglesias C, Messow CM et al (2016) Excessive age-related decline in functional ovarian reserve in infertile women: prospective cohort of 15,500 women. J Clin Endocrinol Metab 101(9):3548–3554

    Article  CAS  PubMed  Google Scholar 

  • Jenkins NL, Mccoll G, Lithgow GJ (2004) Fitness cost of extended lifespan in caenorhabditis elegans. Proc Biol Sci 271:2523–2526

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128:36–44

    Article  CAS  PubMed  Google Scholar 

  • Jones TT, Brewer GJ (2010) Age-related deficiencies in complex i endogenous substrate availability and reserve capacity of complex iv in cortical neuron electron transport. Biochim Biophys Acta 1797:167–176

    Article  CAS  PubMed  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y et al (2003) Systematic functional analysis of the caenorhabditis elegans genome using rnai. Nature 421:231–237

    Article  CAS  PubMed  Google Scholar 

  • Kingsley-Hickman PB, Sako EY, Ugurbil K et al (1990) 31p nmr measurement of mitochondrial uncoupling in isolated rat hearts. J Biol Chem 265:1545–1550

    CAS  PubMed  Google Scholar 

  • Klichko V, Sohal BH, Radyuk SN et al (2014) Decrease in cytochrome c oxidase reserve capacity diminishes robustness of drosophila melanogaster and shortens lifespan. Biochem J 459:127–135

    Article  CAS  PubMed  Google Scholar 

  • Knudsen T, Johansen T (1990) Regulation of the na(+)-k+ pump activity and estimation of the reserve capacity in intact rat peritoneal mast cells. FEBS Lett 269:7–10

    Article  CAS  PubMed  Google Scholar 

  • Kogelnik AM, Lott MT, Brown MD et al (1998) Mitomap: a human mitochondrial genome database–1998 update. Nucleic Acids Res 26:112–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong CM, Lee XW, Wang X (2013) Telomere shortening in human diseases. FEBS J 280:3180–3193

    Article  CAS  PubMed  Google Scholar 

  • Kramer PA, Ravi S, Chacko B et al (2014) A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol 2:206–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanza IR, Zabielski P, Klaus KA et al (2012) Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 16:777–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapointe J, Hekimi S (2008) Early mitochondrial dysfunction in long-lived mclk1 ± mice. J Biol Chem 283:26217–26227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HC, Wei YH (2005) Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37:822–834

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Trimarchi JR, Smith PJ, Keefe DL (2002) Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1:40–46

    Article  CAS  PubMed  Google Scholar 

  • Madonna R, De Caterina R, Willerson JT, Geng YJ (2011) Biologic function and clinical potential of telomerase and associated proteins in cardiovascular tissue repair and regeneration. Eur Heart J 32:1190–1196

    Article  CAS  PubMed  Google Scholar 

  • Manke T, Demetrius L, Vingron M (2006) An entropic characterization of protein interaction networks and cellular robustness. J R Soc Interface 3:843–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao P, Reddy PH (2011) Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: implications for early intervention and therapeutics. Biochim Biophys Acta 1812:1359–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merritt TJ, Sezgin E, Zhu CT, Eanes WF (2006) Triglyceride pools, flight and activity variation at the gpdh locus in drosophila melanogaster. Genetics 172:293–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller FJ, Rosenfeldt FL, Zhang C et al (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a pcr-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller KN, Burhans MS, Clark JP et al (2017) Aging and caloric restriction impact adipose tissue, adiponectin, and circulating lipids. Aging Cell 16(3):497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monaghan P (2014) Organismal stress, telomeres and life histories. J Exp Biol 217:57–66

    Article  PubMed  Google Scholar 

  • Neustadt J, Pieczenik SR (2008) Organ reserve and healthy aging. Integr Med 7:50–52

    Google Scholar 

  • Noblitt SD, Huehls AM, Morris DL Jr (2007) The role of metal ion binding in generating 8-hydroxy-2′-deoxyguanosine from the nucleoside 2′-deoxyguanosine and the nucleotide 2′-deoxyguanosine-5′-monophosphate. J Inorg Biochem 101:536–542

    Article  CAS  PubMed  Google Scholar 

  • Peleg S, Feller C, Forne I et al (2016) Life span extension by targeting a link between metabolism and histone acetylation in drosophila. EMBO Rep 17:455–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesce V, Cormio A, Fracasso F et al (2001) Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Radic Biol Med 30:1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Rattan SI (1995) Gerontogenes: real or virtual? FASEB J 9:284–286

    Article  CAS  PubMed  Google Scholar 

  • Rattan SI (1998) The nature of gerontogenes and vitagenes. Antiaging effects of repeated heat shock on human fibroblasts. Ann N Y Acad Sci 854:54–60

    Article  CAS  PubMed  Google Scholar 

  • Rattan SI (2014) Molecular gerontology: from homeodynamics to hormesis. Curr Pharm Des 20:3036–3039

    Article  CAS  PubMed  Google Scholar 

  • Rattan SI (2015) Biology of ageing: principles, challenges and perspectives. Rom J Morphol Embryol 56:1251–1253

    PubMed  Google Scholar 

  • Rea S, Johnson TE (2003) A metabolic model for life span determination in caenorhabditis elegans. Dev Cell 5:197–203

    Article  CAS  PubMed  Google Scholar 

  • Rossiello F, Herbig U, Longhese MP et al (2014) Irreparable telomeric DNA damage and persistent ddr signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev 26:89–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K, Tai H, Hemmi H et al (2012) Interaction between the heme and a g-quartet in a heme-DNA complex. Inorg Chem 51:8168–8176

    Article  CAS  PubMed  Google Scholar 

  • Salvador A, Savageau MA (2003) Quantitative evolutionary design of glucose 6-phosphate dehydrogenase expression in human erythrocytes. Proc Natl Acad Sci USA 100:14463–14468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders SP, Zweier JL, Kuppusamy P et al (1993) Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport. J Clin Invest 91:46–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansbury BE, Jones SP, Riggs DW et al (2011) Bioenergetic function in cardiovascular cells: the importance of the reserve capacity and its biological regulation. Chem Biol Interact 191:288–295

    Article  CAS  PubMed  Google Scholar 

  • Sarkisian CA, Gruenewald TL, John Boscardin W, Seeman TE (2008) Preliminary evidence for subdimensions of geriatric frailty: the macarthur study of successful aging. J Am Geriatr Soc 56:2292–2297

    Article  PubMed  PubMed Central  Google Scholar 

  • Savji N, Rockman CB, Skolnick AH et al (2013) Association between advanced age and vascular disease in different arterial territories: a population database of over 3.6 million subjects. J Am Coll Cardiol 61:1736–1743

    Article  PubMed  Google Scholar 

  • Schwerzmann K, Hoppeler H, Kayar SR, Weibel ER (1989) Oxidative capacity of muscle and mitochondria: correlation of physiological, biochemical, and morphometric characteristics. Proc Natl Acad Sci USA 86:1583–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehl ME, Yates FE (2001) Kinetics of human aging: i. Rates of senescence between ages 30 and 70 years in healthy people. J Gerontol A Biol Sci Med Sci 56:B198–B208

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Wright WE (2005) Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis 26:867–874

    Article  CAS  PubMed  Google Scholar 

  • Shiva S, Brookes PS, Patel RP et al (2001) Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase. Proc Natl Acad Sci USA 98:7212–7217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloan CD, Shen L, West JD et al (2010) Genetic pathway-based hierarchical clustering analysis of older adults with cognitive complaints and amnestic mild cognitive impairment using clinical and neuroimaging phenotypes. Am J Med Genet B Neuropsychiatr Genet 153B:1060–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobenin IA, Mitrofanov KY, Zhelankin AV et al (2014) Quantitative assessment of heteroplasmy of mitochondrial genome: perspectives in diagnostics and methodological pitfalls. Biomed Res Int 2014:292017

    PubMed  PubMed Central  Google Scholar 

  • Sternberg SA, Wershof Schwartz A, Karunananthan S et al (2011) The identification of frailty: a systematic literature review. J Am Geriatr Soc 59:2129–2138

    Article  PubMed  Google Scholar 

  • Taormina G, Mirisola MG (2014) Calorie restriction in mammals and simple model organisms. Biomed Res Int 2014:308690

    Article  PubMed  PubMed Central  Google Scholar 

  • Tchkonia T, Zhu Y, Van Deursen J et al (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Investig 123:966–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorburn DR, Kuchel PW (1985) Regulation of the human-erythrocyte hexose-monophosphate shunt under conditions of oxidative stress. A study using nmr spectroscopy, a kinetic isotope effect, a reconstituted system and computer simulation. Eur J Biochem 150:371–386

    Article  CAS  PubMed  Google Scholar 

  • Ungvari Z, Parrado-Fernandez C, Csiszar A, De Cabo R (2008) Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res 102:519–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veltri KL, Espiritu M, Singh G (1990) Distinct genomic copy number in mitochondria of different mammalian organs. J Cell Physiol 143:160–164

    Article  CAS  PubMed  Google Scholar 

  • Villani G, Attardi G (1997) In vivo control of respiration by cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells. Proc Natl Acad Sci USA 94:1166–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Kawamoto S, Ohtani N, Hara E (2017) Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci 108:563–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiesner RJ, Ruegg JC, Morano I (1992) Counting target molecules by exponential polymerase chain reaction: copy number of mitochondrial DNA in rat tissues. Biochem Biophys Res Commun 183:553–559

    Article  CAS  PubMed  Google Scholar 

  • Wyckelsma VL, Mckenna MJ (2016) Effects of age on na(+), k(+)-atpase expression in human and rodent skeletal muscle. Front Physiol 7:316

    Article  PubMed  PubMed Central  Google Scholar 

  • Xin MG, Zhang J, Block ER, Patel JM (2003) Senescence-enhanced oxidative stress is associated with deficiency of mitochondrial cytochrome c oxidase in vascular endothelial cells. Mech Ageing Dev 124:911–919

    Article  CAS  PubMed  Google Scholar 

  • Yadava N, Nicholls DG (2007) Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex i with rotenone. J Neurosci 27:7310–7317

    Article  CAS  PubMed  Google Scholar 

  • Zimniak P (2012) What is the proximal cause of aging? Front Genet 3:189

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This project was supported by the National Institute of Aging of NIH (R15AG041414), American Federation for Aging Research (AFAR), and the Ames Foundation to HA. We are thankful to Ms. Marisa Luna and Ms. Gloria Arredondo at Arrowhead Regional Medical Center (ARMC) library for their unconditioned support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani Atamna.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atamna, H., Tenore, A., Lui, F. et al. Organ reserve, excess metabolic capacity, and aging. Biogerontology 19, 171–184 (2018). https://doi.org/10.1007/s10522-018-9746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-018-9746-8

Keywords

Navigation