Skip to main content
Log in

Age-related change in γH2AX of Drosophila muscle: its significance as a marker for muscle damage and longevity

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Muscle aging is closely related to unhealthy late-life and organismal aging. Recently, the state of differentiated cells was shown to be critical to tissue homeostasis. Thus, understanding how fully differentiated muscle cells age is required for ensuring healthy aging. Adult Drosophila muscle is a useful model for exploring the aging process of fully differentiated cells. In this study, we investigated age-related changes of γH2AX, an indicator of DNA strand breaks, in adult Drosophila muscle to document whether its changes are correlated with muscle degeneration and lifespan. The results demonstrate that γH2AX accumulation increases in adult Drosophila thoracic and leg muscles with age. Analyses of short-, normal-, and long-lived strains indicate that the age-related increase of γH2AX is closely associated with the extent of muscle degeneration, cleaved caspase-3 and poly-ubiquitin aggregates, and longevity. Further analysis of muscle-specific knockdown of heterochromatin protein 1a revealed that the excessive γH2AX accumulation in thoracic and leg muscles induces accelerated degeneration and decreases longevity. These data suggest a strong correlation between age-related muscle damage and lifespan in Drosophila. Our findings indicate that γH2AX may be a reliable biomarker for assessing muscle aging in Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arking R (1987) Successful selection for increased longevity in Drosophila: analysis of the survival data and presentation of a hypothesis on the genetic regulation of longevity. Exp Gerontol 22:199–220

    Article  CAS  PubMed  Google Scholar 

  • Arking R (2001) Gene expression and regulation in the extended longevity phenotypes of Drosophila. Ann NY Acad Sci 928:157–167

    Article  CAS  PubMed  Google Scholar 

  • Augustin H, Partridge L (2009) Invertebrate models of age-related muscle degeneration. Biochim Biophys Acta 1790:1084–1094

    Article  CAS  PubMed  Google Scholar 

  • Bai H, Kang P, Hernandez A, Tatar M (2013) Activin signaling targeted by Insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLoS Genet 9:e1003941

    Article  PubMed Central  PubMed  Google Scholar 

  • Bartek J, Lukas J (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19:238–245

    Article  CAS  PubMed  Google Scholar 

  • Bopp A, Wartlick F, Henninger C, Kaina B, Fritz G (2013) Rac1 modulates acute and subacute genotoxin-induced hepatic stress responses, fibrosis and liver aging. Cell Death Dis 4:e558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burgess RC, Misteli T, Oberdoerffer P (2012) DNA damage, chromatin, and transcription: the trinity of aging. Curr Opin Cell Biol 24:724–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39:412–423

    Article  PubMed Central  PubMed  Google Scholar 

  • Daczewska M, Picchio L, Jagla T, Figeac N, Jagla K (2010) Muscle development and regeneration in normal and pathological conditions: learning from Drosophila. Curr Pharm Des 16:929–941

    Article  CAS  PubMed  Google Scholar 

  • Dalleau S, Baradat M, Gueraud F, Huc L (2013) Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ 20:1615–1630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demontis F, Piccirillo R, Goldberg AL, Perrimon N (2013) The influence of skeletal muscle on systemic aging and lifespan. Aging Cell 12:943–949

    Article  CAS  PubMed  Google Scholar 

  • Demontis F, Patel V, Swindell W, Perrimon N (2014) Intertissue control of the nucleolus via a myokine-dependent longevity pathway. Cell Rep 12:1481–1494

    Article  Google Scholar 

  • Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, Price SR, Mitch WE (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113:115–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Falk M, Lukasova E, Kozubek S (2008) Chromatin structure influences the sensitivity of DNA to gamma-radiation. Biochim Biophys Acta 1783:2398–2414

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Fortini P, Dogliotti E (2010) Mechanisms of dealing with DNA damage in terminally differentiated cells. Mutat Res 685:38–44

    Article  CAS  PubMed  Google Scholar 

  • Fortini P, Ferretti C, Pascucci B, Narciso L, Pajalunga D, Puggioni E, Castino R, Isidoro C, Crescenzi M, Dogliotti E (2012) DNA damage response by single-strand breaks in terminally differentiated muscle cells and the control of muscle integrity. Cell Death Differ 19:1741–1749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freitas AA, De Magalhães JP (2011) A review and appraisal of the DNA damage theory of ageing. Mutat Res 728:12–22

    Article  CAS  PubMed  Google Scholar 

  • Frost B, Hemberg M, Lewis J, Feany M (2014) Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci 17:357–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia A, Calder R, Dollé M, Lundell M, Kapahi P, Vijg J (2010) Age- and temperature-dependent somatic mutation accumulation in Drosophila melanogaster. PLoS Genet 6:e1000950

    Article  PubMed Central  PubMed  Google Scholar 

  • Gargano JW, Martin I, Bhandari P, Grotewiel MS (2005) Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp Gerontol 40:386–395

    Article  PubMed  Google Scholar 

  • Gopinath S, Rando T (2008) Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell 7:590–598

    Article  CAS  PubMed  Google Scholar 

  • Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A, Gonos ES, Thrasivoulou C, Saffrey MJ, Cameron K, von Zglinicki T (2012) Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11:996–1004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaina B (2003) DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem Pharmacol 66:1547–1554

    Article  CAS  PubMed  Google Scholar 

  • Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14:32–43

    Article  CAS  PubMed  Google Scholar 

  • Larson K, Yan SJ, Tsurumi A, Liu J, Zhou J, Gaur K, Guo D, Eickbush TH, Li WX (2012) Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 8:e1002473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Mitchell JR, Hasty P (2008) DNA double-strand breaks: a potential causative factor for mammalian aging? Mech Ageing Dev 129:416–424

    Article  CAS  PubMed  Google Scholar 

  • Mah LJ, El-Osta A, Karagiannis T (2010) GammaH2AX as a molecular marker of aging and disease. Epigenetics 5:129–136

    Article  CAS  PubMed  Google Scholar 

  • Marzetti E, Leeuwenburgh C (2006) Skeletal muscle apoptosis, sarcopenia and frailty at old age. Exp Gerontol 41:1234–1238

    Article  CAS  PubMed  Google Scholar 

  • Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE (2013) The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 12:661–684

    Article  CAS  PubMed  Google Scholar 

  • Na HJ, Park JS, Pyo JH, Lee SH, Jeon HJ, Kim YS, Yoo MA (2013) Mechanism of metformin: inhibition of DNA damage and proliferative activity in Drosophila midgut stem cell. Mech Ageing Dev 134:381–390

    Article  CAS  PubMed  Google Scholar 

  • Nair KS (2005) Aging muscle. Am J Clin Nutr 81:953–963

    CAS  PubMed  Google Scholar 

  • Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB (2006) Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci 61:72–77

    Article  PubMed  Google Scholar 

  • Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan RJ, Karlseder J (2012) The great unravelling: chromatin as a modulator of the aging process. Trends Biochem Sci 37:466–476

    Article  PubMed Central  PubMed  Google Scholar 

  • Owusu-Ansah E, Song W, Perrimon N (2013) Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155:699–712

    Article  CAS  PubMed  Google Scholar 

  • Papamichos-Chronakis M, Peterson C (2013) Chromatin and the genome integrity network. Nat Rev Genet 14:62–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park JS, Lee SH, Na HJ, Pyo JH, Kim YS, Yoo MA (2012) Age- and oxidative stress-induced DNA damage in Drosophila intestinal stem cells as marked by Gamma-H2AX. Exp Gerontol 47:401–405

    Article  CAS  PubMed  Google Scholar 

  • Peng JC, Karpen GH (2009) Heterochromatic genome stability requires regulators of histone H3 K9 methylation. PLoS Genet 5:e1000435

    Article  PubMed Central  PubMed  Google Scholar 

  • Piazza N, Gosangi B, Devilla S, Arking R, Wessells R (2009) Exercise-training in young Drosophila melanogaster reduces age-related decline in mobility and cardiac performance. PLoS One 4:e5886

    Article  PubMed Central  PubMed  Google Scholar 

  • Powers SK, Duarte J, Kavazis AN, Talbert EE (2010) Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp Physiol 95:1–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pyo JH, Park JS, Na HJ, Jeon HJ, Lee SH, Kim JG, Park SY, Jin YW, Kim YS, Yoo MA (2014) Functional modification of Drosophila intestinal stem cells by ionizing radiation. Radiat Res 181:376–386

    Article  CAS  PubMed  Google Scholar 

  • Rando T (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086

    Article  CAS  PubMed  Google Scholar 

  • Redon CE, Nakamura AJ, Martin OA, Parekh PR, Weyemi US, Bonner WM (2011) Recent developments in the use of gamma-H2AX as a quantitative DNA double-strand break biomarker. Aging 3:168–174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reichenbach J, Schubert R, Schindler D, Müller K, Böhles H, Zielen S (2002) Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal 4:465–469

    Article  CAS  PubMed  Google Scholar 

  • Rodier F, Muñoz D, Teachenor R, Chu V, Le O, Bhaumik D, Coppé JP, Campeau E, Beauséjour CM, Kim SH, Davalos AR, Campisi J (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124:68–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  • Ross RE (2000) Age-specific decrease in aerobic efficiency associated with increase in oxygen free radical production in Drosophila melanogaster. J Insect Physiol 46:1477–1480

    Article  CAS  PubMed  Google Scholar 

  • Russell S, Kahn C (2007) Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8:681–691

    Article  CAS  PubMed  Google Scholar 

  • Sandri M, Carraro U, Podhorska-Okolov M, Rizzi C, Arslan P, Monti D, Franceschi C (1995) Apoptosis, DNA damage and ubiquitin expression in normal and mdx muscle fibers after exercise. FEBS Lett 373:291–295

    Article  CAS  PubMed  Google Scholar 

  • Soh JW, Hotic S, Arking R (2007) Dietary restriction in Drosophila is dependent on mitochondrial efficiency and constrained by pre-existing extended longevity. Mech Ageing Dev 128:581–593

    Article  CAS  PubMed  Google Scholar 

  • Sriram S, Subramanian S, Juvvuna P, McFarlane C, Salerno M, Kambadur R, Sharma M (2014) Myostatin induces DNA damage in skeletal muscle of Streptozotocin-induced type 1 diabetic mice. J Biol Chem 289:5784–5798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szczesny B, Tann A, Mitra S (2010) Age- and tissue-specific changes in mitochondrial and nuclear DNA base excision repair activity in mice: susceptibility of skeletal muscles to oxidative injury. Mech Ageing Dev 131:330–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka T, Halicka H, Huang X, Traganos F, Darzynkiewicz Z (2006) Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle 5:1940–1945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor MV (2006) Comparison of muscle development in Drosophila and vertebrates. In: Sink H (ed) Muscle development in Drosophila. Landes Bioscience, Springer, New York, pp 169–203

    Chapter  Google Scholar 

  • Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, Von Zglinicki T (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8:311–323

    Article  CAS  PubMed  Google Scholar 

  • Wang XH, Zhang L, Mitch WE, LeDoux JM, Hu J, Du J (2010) Caspase-3 cleaves specific 19 S proteasome subunits in skeletal muscle stimulating proteasome activity. J Biol Chem 285:21249–21257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watters D, Kedar P, Spring K, Bjorkman J, Chen P, Gatei M, Birrell G, Garrone B, Srinivasa P, Crane D, Lavin M (1999) Localization of a portion of extranuclear ATM to peroxisomes. J Biol Chem 274:34277–34282

    Article  CAS  PubMed  Google Scholar 

  • Yan SJ, Lim SJ, Shi S, Dutta P, Li WX (2011) Unphosphorylated STAT and heterochromatin protect genome stability. FASEB J 25:232–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng J, Edelman SW, Tharmarajah G, Walker DW, Pletcher SD, Seroude L (2005) Differential patterns of apoptosis in response to aging in Drosophila. Proc Natl Acad Sci USA 102:12083–12088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Byung P. Yu (University of Texas Health Science Center) for invaluable comments on the manuscript. This work was supported by the R&D program of MOTIE/KEIT (10040391, Development of Functional Food Materials and Device for Prevention of Aging-associated Muscle Function Decrease).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Ae Yoo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 29597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, HJ., Kim, YS., Park, JS. et al. Age-related change in γH2AX of Drosophila muscle: its significance as a marker for muscle damage and longevity. Biogerontology 16, 503–516 (2015). https://doi.org/10.1007/s10522-015-9573-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-015-9573-0

Keywords

Navigation