Skip to main content
Log in

Protective effect of curcuminoids on age-related mitochondrial impairment in female Wistar rat brain

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The present study demonstrated the neuroprotective effect of curcuminoids, the active polyphenols of Curcuma longa (L.) rhizomes on mitochondrial dysfunctioning in middle aged and aged female Wistar rat brain. Rats were orally treated with curcuminoids (100 mg/kg) for 3 months and their brain was collected for evaluation of mitochondrial enzymes and complexes activity, ultra structural changes in mitochondria, neuronal nitric oxide synthase (nNOS) protein expression, adenosine triphosphate (ATP) and lipofuscin content. Significant alterations were observed in all the tested parameters in highly aged rat brain when compared with young control. Long term curcuminoids administration prevented this age associated loss of mitochondrial enzymes and complexes activity in middle aged rat brain except for malate dehydrogenase, Complex II and IV activity when compared with young control. Among aged rats, curcuminoids treatment specifically elevated isocitrate and NADH dehydrogenase, cytochrome c oxidase, Complex I and total ATP content. A significant down-regulation of nNOS protein expression along with reduced lipofuscin content was also observed in curucminoids treated middle aged and aged rats. Thus, it was suggested that curcuminoids may act as a putative drug candidate for the prevention of deleterious effects of ageing and age associated neurodegenerative disorders through amelioration of aberrant mitochondrial functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed T, Gilani AH (2009) Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol Biochem Behav 91(4):554–559

    Article  CAS  PubMed  Google Scholar 

  • Ahmed T, Gilani AH (2013) Therapeutic potential of turmeric in Alzheimer’s disease: curcumin or curcuminoids? Phytother Res. doi:10.1002/ptr.5030

    Google Scholar 

  • Aliyev A, Chen SG, Seyidova D, Smith MA, Perry G, de la Torre J, Aliev G (2005) Mitochondria DNA deletions in atherosclerotic hypoperfused brain microvessels as a primary target for the development of Alzheimer’s disease. J Neurol Sci 229–230:285–292

    Article  PubMed  Google Scholar 

  • Belviranl M, Okudan N, Atalk KE, Öz M (2013) Curcumin improves spatial memory and decreases oxidative damage in aged female rats. Biogerontology 14(2):187–196

    Article  Google Scholar 

  • Birch-Machin MA, Briggs HL, Saborido AA, Bindoff LA, Turnbull DM (1994) An evaluation of the measurement of the activities of complexes I–IV in the respiratory chain of human skeletal muscle mitochondria. Biochem Med Metab Biol 51:35–42

    Article  CAS  PubMed  Google Scholar 

  • Bolanos JP, Almeida A, Stewart V, Peuchen S, Land JM, Clark JB, Heales SJ (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 68:2227–2240

    Article  CAS  PubMed  Google Scholar 

  • Braidy N, Grant R, Adams S, Guillemin GJ (2010) Neuroprotective effects of naturally occurring polyphenols on quinolinic acid induced excitotoxicity in human neurons. FEBS J 277(2):368–382

    Article  CAS  PubMed  Google Scholar 

  • Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE (2005) Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 57:695–703

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Bates TE, Stella AM (2000) NO synthase and NO dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochem Res 25:1315–1341

    Article  CAS  PubMed  Google Scholar 

  • Cash AD, Aliev G, Siedlak SL, Nunomura A, Fujioka H, Zhu X, Raina AK, Vinters HV, Tabaton M, Johnson AB, Paula-Barbosa M, Avila J, Jones PK, Castellani RJ, Smith MA, Perry G (2003) Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am J Pathol 162:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Chuang YC, Tsai JL, Chang AY, Chan JY, Liou CW, Chan SH (2002) Dysfunction of the mitochondrial respiratory chain in the rostral ventrolateral medulla during experimental endotoxemia in the rat. J Biomed Sci 9:542–548

    Article  CAS  PubMed  Google Scholar 

  • Crouch PJ, Cimdins K, Duce JA, Bush AI, Trounce IA (2007) Mitochondria in aging and Alzheimer’s disease. Rejuvenation Res. 10:349–357

    Article  CAS  PubMed  Google Scholar 

  • Czerniczyniec A, Bustamante J, Arnaiz SL (2006) Modulation of brain mitochondrial function by deprenyl. Neurochem Int 48:235–241

    Article  CAS  PubMed  Google Scholar 

  • Davey GP, Peuchen S, Clark JB (1998) Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem 273:12753–12757

    Article  CAS  PubMed  Google Scholar 

  • Demirovic D, Rattan SI (2011) Curcumin induces stress response and hormetically modulates wound healing ability of human skin fibroblasts undergoing ageing in vitro. Biogerontology 12(5):437–444

    Article  CAS  PubMed  Google Scholar 

  • Elfering SL, Sarkela TM, Giulivi C (2002) Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem 277(41):38079–38086

    Article  CAS  PubMed  Google Scholar 

  • Frasca JM, Parks VR (1960) A routine technique for double staining ultrathin sections using uranyl and lead salts. J Cell Biol 25:157

    Article  Google Scholar 

  • Garcia-Ruiz C, Collel A, Morales A (1995) Role of oxidative stress generated from the mitochondrial transport chain and mitochondrial GSH status in loss of mitochondrial function and activation of transcription factor NF-κB. Studies with isolated mitochondria and rats hepatocytes. Mol Pharmacol 48:825–834

    CAS  PubMed  Google Scholar 

  • Gibson SL, Hilf R (1983) Photosensitization of mitochondrial cytochrome c oxidase by hemato-porphyrin derivative and related porphyrins, in vitro and in vivo. Cancer Res 43:4191–4197

    CAS  PubMed  Google Scholar 

  • Gibson GE, Sheu KFR, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm 105(8–9):855–870

    Article  CAS  PubMed  Google Scholar 

  • Haripriya D, Anusuya Devi M, Kokilavani V, Sangeetha P, Panneerselvam C (2004) Age-dependent alterations in mitochondrial enzymes in cortex, striatum and hippocampus of rat brain—potential role of l-Carnitine. Biogerontology 5:355–364

    Article  CAS  PubMed  Google Scholar 

  • Haycock JW, Jones P, Harris JB, Mantle D (1996) Differential susceptibility of human skeletal muscle proteins to free radical induced oxidative damage: a histochemical, immunocytochemical and electron microscopical study in vitro. Acta Neuropathol 92:331–340

    Article  CAS  PubMed  Google Scholar 

  • Hinerfeld D, Traini MD, Weinberger RP, Cochran B, Doctrow SR, Harry J, Melov S (2004) Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J Neurochem 88:657–667

    Article  CAS  PubMed  Google Scholar 

  • Jesko H, Chalimoniuk M, Strosznajder JB (2003) Activation of constitutive nitric oxide synthase(s) and absence of inducible isoform in aged rat brain. Neurochem Int 42:315–322

    Article  CAS  PubMed  Google Scholar 

  • Kwong LK, Sohal RS (2000) Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys 373(1):16–22

    Article  CAS  PubMed  Google Scholar 

  • McCann SM, Licinio J, Wong ML, Yu WH, Karanth S, Rettori V (1998) The nitric oxide hypothesis of aging. Exp Gerontol 33:813–826

    Article  CAS  PubMed  Google Scholar 

  • Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774–779

    Article  CAS  PubMed  Google Scholar 

  • Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA (2003) Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem 278(39):37223–37230

    Article  CAS  PubMed  Google Scholar 

  • Mythri RB, Jagatha B, Pradhan N, Andersen J, Bharath MM (2007) Mitochondrial complex I inhibition in Parkinson’s disease: how can curcumin protect mitochondria? Antioxid Redox Signal 9(3):399–408

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Boveris A (2004) Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287:R1244–R1249

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Boveris A (2005) Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287:R1244–R1249

    Article  Google Scholar 

  • Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–C686

    Article  CAS  PubMed  Google Scholar 

  • Obrenovich ME, Smith MA, Siedlak SL, Chen SG, de la Torre JC, Perry G, Aliev G (2006) Overexpression of GRK2 in Alzheimer disease and in a chronic hypoperfusion rat model is an early marker of brain mitochondrial lesions. Neurotox Res 10(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Ojaimi J, Masters CL, Opeskin K, McKelvie P, Byrne E (1999) Mitochondrial respiratory chain activity in the human brain as a function of age. Mech Ageing Dev 111:39–47

    Article  CAS  PubMed  Google Scholar 

  • Parihar MS, Parihar A, Villamena FA, Vaccaro PS, Ghafourifar P (2008) Inactivation of mitochondrial respiratory chain complex I leads mitochondrial nitric oxide synthase to become pro-oxidative. Biochem Biophys Res Commun 367:761–767

    Article  CAS  PubMed  Google Scholar 

  • Rastogi M, Ojha RP, Rajamanickam GV, Agrawal A, Aggarwal A, Dubey GP (2008) Curcuminoids modulates oxidative damage and mitochondrial dysfunction in diabetic rat brain. Free Radical Res 11(2):999–1005

    Article  Google Scholar 

  • Remus JC, Firman JD (1995) Effect of thiamine deficiency on energy metabolites in the Turkey. J Nutr Biochem 6:636–639

    Google Scholar 

  • Sastre J, Millan A, dl Garcia A, Pla R, Juan G, O’Connor EP, Martin JA, Droy-Lefaix MT, Vina J (1998) A Ginkgo biloba extract (EGb 761) prevents mitochondrial aging by protecting against oxidative stress. Free Radic Biol Med 24:298–304

    Article  CAS  PubMed  Google Scholar 

  • Schipper HM (2011) Heme oxygenase-1 in Alzheimer disease: a tribute to Moussa Youdim. J Neural Transm 118:381–387

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Sethi P, Hussain E, Singh R (2009) Curcumin counteracts the aluminium-induced ageing-related alterations in oxidative stress, Na+, K+ ATPase and protein kinase C in adult and old rat brain regions. Biogerontology 10(4):489–502

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Hui X, Deng H, Yu H, Je Y, Estevez AG, Gibson GE (2011) Inactivation and reactivation of the mitochondrial α-ketoglutarate dehydrogenase complex. J Biol Chem 286(20):17640–17648

    Google Scholar 

  • Shults CW, Nasirian F, Ward DM, Nakano K, Pay M, Hill LR, Haas RH (1995) Carbidopa: levodopa and selegiline do not affect platelet mitochondrial function in early Parkinsonism. Neurology 45:344–348

    Article  CAS  PubMed  Google Scholar 

  • Sood PK, Nahar U, Nehru B (2011) Curcumin attenuates aluminium induced oxidative stress and mitochondrial dysfunction in rat brain. Neurotox Res 20(4):351–361

    Article  CAS  PubMed  Google Scholar 

  • Sudheesh NP, Ajith TA, Janardhanan KK (2009) Ganoderma lucidum (Fr.) P. Karst enhances activities of heart mitochondrial enzymes and respiratory chain complexes in the aged rat. Biogerontology 10(5):627–636

    Article  CAS  PubMed  Google Scholar 

  • Takasawa M, Hayakawa M, Sugiyama S, Hattori K, Ito T, Ozawa T (1993) Age-associated damage in mitochondrial function in rat hearts. Exp Gerontol 28:269–280

    Article  CAS  PubMed  Google Scholar 

  • Tekkanat KK, Fox IH (1988) Isocratic separation of ATP and its degradation products from biological fluids by automated liquid chromatography. Clin Chem 3415:925–932

    Google Scholar 

  • Wakabayashi T (2002) Megamitochondria formation—physiology and pathology. J Cell Mol Med 6:497–538

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Qiu F (2013) Curcuminoid metabolism and its contribution to the pharmacological effects. Curr Drug Metab 14(7):791–806

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm J, Herget J (1999) Hypoxia induces free radical damage to rat erythrocytes and spleen: analysis of the fluorescent end-products of lipid peroxidation. Int J Biochem Cell Biol 31:671–681

    Article  CAS  PubMed  Google Scholar 

  • Yan LJ, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci USA 94:11168–11172

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. S. K. Shankar, Former Head, Department of Neuropathology, NIMHANS for granting permission to perform TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manisha Rastogi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rastogi, M., Ojha, R.P., Sagar, C. et al. Protective effect of curcuminoids on age-related mitochondrial impairment in female Wistar rat brain. Biogerontology 15, 21–31 (2014). https://doi.org/10.1007/s10522-013-9466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-013-9466-z

Keywords

Navigation